Carbon-Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO2 Hydrogenation to Methanol

被引:64
作者
Ye, Haichuan [1 ,2 ]
Na, Wei [1 ,2 ]
Gao, Wengui [1 ,2 ]
Wang, Hua [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
关键词
carbon modification; CO2; hydrogenation; CuO; ZnO; methanol; oxygen vacancy; CONTACT QUANTIFICATION MODEL; METAL-ORGANIC FRAMEWORKS; CU-ZNO SYNERGY; PERFORMANCE; DIOXIDE; ZIF-8; PD; NANOCRYSTALS; SELECTIVITY; MORPHOLOGY;
D O I
10.1002/ente.202000194
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 hydrogenation to methanol is a prospective approach to alleviate both global warming and energy problems. CuO/ZnO is proven to be an efficient catalyst, in which ZnO carriers prepared by different methods directly affect the catalytic activity. Herein, a novel method is used to apply a zeolite imidazolate framework-8 (ZIF-8)-derived ZnO to the carrier of copper-based catalyst. In the process of thermal transformation from ZIF-8 to ZnO, the carrier ZnO-400 is specially modified by carbon inherited from ZIF-8, and the corresponding CuO/ZnO-400 catalyst still has special carbon modification, which is confirmed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Meanwhile, the pyrolysis temperature of ZIF-8 affects the surface oxygen defects of ZnO and the CuO/ZnO-400 catalyst has a large oxygen vacancy concentration, which is proven by X-ray diffraction (XRD) and XPS. Consequently, the CuO/ZnO-400 catalyst achieves the best CO2 conversion and methanol selectivity due to more oxygen vacancies and carbon modification.
引用
收藏
页数:13
相关论文
共 58 条
[31]   Methanol for Renewable Energy Storage and Utilization [J].
Raeuchle, Konstantin ;
Plass, Ludolf ;
Wernicke, Hans-Juergen ;
Bertau, Martin .
ENERGY TECHNOLOGY, 2016, 4 (01) :193-200
[32]   Performance of Cu-Zn-Al-Zr catalyst prepared by ultrasonic spray precipitation technique in the synthesis of methanol via CO2 hydrogenation [J].
Ramli, Muhammad Zahiruddin ;
Syed-Hassan, Syed Shatir A. ;
Hadi, Abdul .
FUEL PROCESSING TECHNOLOGY, 2018, 169 :191-198
[33]   The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts Part I.: Steady-state studies [J].
Rhodes, MD ;
Bell, AT .
JOURNAL OF CATALYSIS, 2005, 233 (01) :198-209
[34]   Sea Urchin-Like MOF-Derived Formation of Porous Cu3P@C as an Efficient and Stable Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions [J].
Rong, Jian ;
Xu, Jinchao ;
Qiu, Fengxian ;
Zhu, Yao ;
Fang, Yuanyuan ;
Xu, Jicheng ;
Zhang, Tao .
ADVANCED MATERIALS INTERFACES, 2019, 6 (14)
[35]   CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy [J].
Rui, Ning ;
Wang, Zongyuan ;
Sun, Kaihang ;
Ye, Jingyun ;
Ge, Qingfeng ;
Liu, Chang-jun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 218 :488-497
[36]   Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol [J].
Rungtaweevoranit, Bunyarat ;
Baek, Jayeon ;
Araujo, Joyce R. ;
Archanjo, Braulio S. ;
Choi, Kyung Min ;
Yaghi, Omar M. ;
Somotjai, Gabor A. .
NANO LETTERS, 2016, 16 (12) :7645-7649
[37]   Roles of nitrogen species on nitrogen-doped CNTs supported Cu-ZrO2 system for carbon dioxide hydrogenation to methanol [J].
Sun, Yuhai ;
Chen, Limin ;
Bao, Yunfeng ;
Wang, Guannan ;
Zhang, Yujun ;
Fu, Mingli ;
Wu, Junliang ;
Ye, Daiqi .
CATALYSIS TODAY, 2018, 307 :212-223
[38]   Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation [J].
Tada, Shohei ;
Watanabe, Fumihiro ;
Kiyota, Keiko ;
Shimoda, Naohiro ;
Hayashi, Reina ;
Takahashi, Makoto ;
Nariyuki, Akane ;
Igarashi, Akira ;
Satokawa, Shigeo .
JOURNAL OF CATALYSIS, 2017, 351 :107-118
[39]   A Single Chamber Direct Methanol Fuel Cell [J].
Thimmappa, Ravikumar ;
Aralekallu, Shambhulinga ;
Devendrachari, Mruthyunjayachari Chattanahalli ;
Kottaichamy, Alagar Raja ;
Bhat, Zahid Manzoor ;
Shafi, Shahid Pottachola ;
Lokesh, Koodlur Sannegowda ;
Thotiyl, Musthafa Ottakam .
ADVANCED MATERIALS INTERFACES, 2017, 4 (21)
[40]   The Cu-ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu-ZnO coprecipitate catalysts [J].
Tisseraud, Celine ;
Comminges, Clement ;
Belin, Thomas ;
Ahouari, Hania ;
Soualah, Ahcene ;
Pouilloux, Yannick ;
Le Valant, Anthony .
JOURNAL OF CATALYSIS, 2015, 330 :533-544