Carbon-Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO2 Hydrogenation to Methanol

被引:64
作者
Ye, Haichuan [1 ,2 ]
Na, Wei [1 ,2 ]
Gao, Wengui [1 ,2 ]
Wang, Hua [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
关键词
carbon modification; CO2; hydrogenation; CuO; ZnO; methanol; oxygen vacancy; CONTACT QUANTIFICATION MODEL; METAL-ORGANIC FRAMEWORKS; CU-ZNO SYNERGY; PERFORMANCE; DIOXIDE; ZIF-8; PD; NANOCRYSTALS; SELECTIVITY; MORPHOLOGY;
D O I
10.1002/ente.202000194
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 hydrogenation to methanol is a prospective approach to alleviate both global warming and energy problems. CuO/ZnO is proven to be an efficient catalyst, in which ZnO carriers prepared by different methods directly affect the catalytic activity. Herein, a novel method is used to apply a zeolite imidazolate framework-8 (ZIF-8)-derived ZnO to the carrier of copper-based catalyst. In the process of thermal transformation from ZIF-8 to ZnO, the carrier ZnO-400 is specially modified by carbon inherited from ZIF-8, and the corresponding CuO/ZnO-400 catalyst still has special carbon modification, which is confirmed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Meanwhile, the pyrolysis temperature of ZIF-8 affects the surface oxygen defects of ZnO and the CuO/ZnO-400 catalyst has a large oxygen vacancy concentration, which is proven by X-ray diffraction (XRD) and XPS. Consequently, the CuO/ZnO-400 catalyst achieves the best CO2 conversion and methanol selectivity due to more oxygen vacancies and carbon modification.
引用
收藏
页数:13
相关论文
共 58 条
[1]   Carbon dioxide utilization via carbonate-promoted C-H carboxylation [J].
Banerjee, Aanindeeta ;
Dick, Graham R. ;
Yoshino, Tatsuhiko ;
Kanan, Matthew W. .
NATURE, 2016, 531 (7593) :215-+
[2]   Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors [J].
Cai, Chenglong ;
Zou, Yongjin ;
Xiang, Cuili ;
Chu, Hailiang ;
Qiu, Shujun ;
Sui, Qingli ;
Xu, Fen ;
Sun, Lixian ;
Shah, Afzal .
APPLIED SURFACE SCIENCE, 2018, 440 :47-54
[3]   CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces [J].
Chen, Kun ;
Fang, Huihuang ;
Wu, Simson ;
Liu, Xi ;
Zheng, Jianwei ;
Zhou, Song ;
Duan, Xinping ;
Zhuang, Yichao ;
Tsang, Shik Chi Edman ;
Yuan, Youzhu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 251 :119-129
[4]  
Dang S., 2017, Nat. Rev. Mater, V17075, P1
[5]   Carbon Nanofiber-Based Palladium/Zinc Catalysts for the Hydrogenation of Carbon Dioxide to Methanol at Atmospheric Pressure [J].
Diez-Ramirez, Javier ;
Sanchez, Paula ;
Rodriguez-Gomez, Alberto ;
Luis Valverde, Jose ;
Dorado, Fernando .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (12) :3556-3567
[6]   A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol [J].
Fan, Yu Jia ;
Wu, Su Fang .
JOURNAL OF CO2 UTILIZATION, 2016, 16 :150-156
[7]   Methanol Synthesis from CO2: A Review of the Latest Developments in Heterogeneous Catalysis [J].
Guil-Lopez, R. ;
Mota, N. ;
Llorente, J. ;
Millan, E. ;
Pawelec, B. ;
Fierro, J. L. G. ;
Navarro, R. M. .
MATERIALS, 2019, 12 (23)
[8]   One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity [J].
Hu, Xue ;
Liu, Xidong ;
Zhang, Xiaodan ;
Chai, Hongxiang ;
Huang, Yuming .
BIOSENSORS & BIOELECTRONICS, 2018, 105 :65-70
[9]   1D alignment of ZnO@ZIF-8/67 nanorod arrays for visible-light-driven photoelectrochemical water splitting [J].
Jia, Guangri ;
Liu, Lulu ;
Zhang, Lei ;
Zhang, Dantong ;
Wang, Ying ;
Cui, Xiaoqiang ;
Zheng, Weitao .
APPLIED SURFACE SCIENCE, 2018, 448 :254-260
[10]   CO2 hydrogenation to methanol on Pd-Cu bimetallic catalysts: H2/CO2 ratio dependence and surface species [J].
Jiang, Xiao ;
Wang, Xiaoxing ;
Nie, Xiaowa ;
Koizumi, Naoto ;
Guo, Xinwen ;
Song, Chunshan .
CATALYSIS TODAY, 2018, 316 :62-70