Individual and combined effects of OA-related subchondral bone alterations on proximal tibial surface stiffness: a parametric finite element modeling study

被引:24
作者
Amini, Morteza [1 ]
Nazemi, S. Majid [1 ]
Lanovaz, Joel L. [2 ]
Kontulainen, Saija [2 ]
Masri, Bassam A. [3 ,4 ]
Wilson, David R. [3 ,4 ]
Szyszkowski, Walerian [1 ]
Johnston, James D. [1 ]
机构
[1] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N IG9, Canada
[2] Univ Saskatchewan, Coll Kinesiol, Saskatoon, SK S7N IG9, Canada
[3] Univ British Columbia, Dept Orthoped, Vancouver, BC V5Z 1M9, Canada
[4] Univ British Columbia, Ctr Hip Hlth & Mobil, Vancouver, BC V5Z 1M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Subchondral bone; Stiffness; Osteoarthritis; Finite element analysis; Proximal tibia; TRABECULAR BONE; MECHANICAL-PROPERTIES; ARTICULAR-CARTILAGE; CANCELLOUS BONE; KNEE-JOINT; CONTACT MECHANICS; MEDIAL CONDYLE; CORTICAL BONE; FEMORAL-HEAD; DENSITY;
D O I
10.1016/j.medengphy.2015.05.011
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The role of subchondral bone in OA pathogenesis is unclear. While some OA-related changes to morphology and material properties in different bone regions have been described, the effect of these alterations on subchondral bone surface stiffness has not been investigated. The objectives of this study were to characterize the individual (Objective 1) and combined (Objective 2) effects of OA-related morphological and mechanical alterations to subchondral and epiphyseal bone on surface stiffness of the proximal tibia. We developed and validated a parametric FE model of the proximal tibia using quantitative CT images of 10 fresh-frozen cadaveric specimens and in situ macro-indentation testing. Using this validated FE model, we estimated the individual and combined roles of OA-related alterations in subchondral cortical thickness and elastic modulus, and subchondral trabecular and epiphyseal trabecular elastic moduli on local surface stiffness. A 20% increase in subchondral cortical or subchondral trabecular elastic moduli resulted in little change in stiffness (1% increase). A 20% reduction in epiphyseal trabecular elastic modulus, however, resulted in an 11% reduction in stiffness. Our parametric analysis suggests that subchondral bone stiffness is affected primarily by epiphyseal trabecular bone elastic modulus rather than subchondral cortical and trabecular morphology or mechanical properties. Our results suggest that observed OA-related alterations to epiphyseal trabecular bone (e.g., lower mineralization, bone volume fraction, density and elastic modulus) may contribute to OA proximal tibiae being less stiff than normal. (C) 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:783 / 791
页数:9
相关论文
共 74 条
[1]   Direct in vivo strain measurements in human bone-A systematic literature review [J].
Al Nazer, R. ;
Lanovaz, J. ;
Kawalilak, C. ;
Johnston, J. D. ;
Kontulainen, S. .
JOURNAL OF BIOMECHANICS, 2012, 45 (01) :27-40
[2]   COMPRESSIVE MECHANICAL-PROPERTIES OF HUMAN CANCELLOUS BONE AFTER GAMMA-IRRADIATION [J].
ANDERSON, MJ ;
KEYAK, JH ;
SKINNER, HB .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1992, 74A (05) :747-752
[3]   The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone [J].
Austman, Rebecca L. ;
Milner, Jaques S. ;
Holdsworth, David W. ;
Dunning, Cynthia E. .
JOURNAL OF BIOMECHANICS, 2008, 41 (15) :3171-3176
[4]   Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology [J].
Bennell, Kim L. ;
Creaby, Mark W. ;
Wrigley, Tim V. ;
Hunter, David J. .
ARTHRITIS AND RHEUMATISM, 2008, 58 (09) :2776-2785
[5]   MECHANICAL STRENGTH OF TIBIAL TRABECULAR BONE EVALUATED BY X-RAY COMPUTED-TOMOGRAPHY [J].
BENTZEN, SM ;
HVID, I ;
JORGENSEN, J .
JOURNAL OF BIOMECHANICS, 1987, 20 (08) :743-&
[6]   Prediction of strength and strain of the proximal femur by a CT-based finite element method [J].
Bessho, Masahiko ;
Ohnishi, Isao ;
Matsuyama, Juntaro ;
Matsumoto, Takuya ;
Imai, Kazuhiro ;
Nakamura, Kozo .
JOURNAL OF BIOMECHANICS, 2007, 40 (08) :1745-1753
[7]   Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee [J].
Beuf, O ;
Ghosh, S ;
Newitt, DC ;
Link, TM ;
Steinbach, L ;
Ries, M ;
Lane, N ;
Majumdar, S .
ARTHRITIS AND RHEUMATISM, 2002, 46 (02) :385-393
[8]   Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans [J].
Bobinac, D ;
Spanjol, J ;
Zoricic, S ;
Maric, I .
BONE, 2003, 32 (03) :284-290
[9]   Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T [J].
Bolbos, R. I. ;
Zuo, Jin ;
Banerjee, Suchandrima ;
Link, Thomas M. ;
Ma, C. Benjamin ;
Li, Xiaojuan ;
Majumdar, Sharmila .
OSTEOARTHRITIS AND CARTILAGE, 2008, 16 (10) :1150-1159
[10]   Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury [J].
Boyd, SK ;
Matyas, JR ;
Wohl, GR ;
Kantzas, A ;
Zernicke, RF .
JOURNAL OF APPLIED PHYSIOLOGY, 2000, 89 (06) :2359-2364