Compact families of piecewise constant functions in Lp(0, T; B)

被引:81
作者
Dreher, Michael [2 ]
Juengel, Ansgar [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
基金
奥地利科学基金会;
关键词
Compactness; Aubin lemma; Rothe method;
D O I
10.1016/j.na.2011.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A strong compactness result in the spirit of the Lions-Aubin-Simon lemma is proven for piecewise constant functions in time (u(tau)) with values in a Banach space. The main feature of our result is that it is sufficient to verify one uniform estimate for the time shifts u(tau) - u(tau) (center dot - tau) instead of all time shifts u(tau) - u(tau) (center dot - h) for h > 0, as required in Simon's compactness theorem. This simplifies significantly the application of the Rothe method in the existence analysis of parabolic problems. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3072 / 3077
页数:6
相关论文
共 8 条
[1]  
Amann H., 2000, Glas. Mat. Ser., V35, P161
[2]  
Andreianov B., 2011, TIME COMPACTNESS TOO
[3]   Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation [J].
Emmrich, Etienne ;
Thalhammer, Mechthild .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) :82-118
[4]  
Gallouet T., 2012, COMMUN PURE IN PRESS
[5]  
Kacur J., 1985, TEUBNER TEXTE MATH, V80
[6]  
Roubicek T., 2005, NONLINEAR PARTIAL DI
[7]   COMPACT-SETS IN THE SPACE LP(O, T-B) [J].
SIMON, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 146 :65-96
[8]   COMPACTNESS PROPERTIES OF THE DG AND CG TIME STEPPING SCHEMES FOR PARABOLIC EQUATIONS [J].
Walkington, Noel J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4680-4710