An in situ fluorine and ex situ titanium two-step co-doping strategy for efficient solar water splitting by hematite photoanodes

被引:16
作者
Kang, Kyoungwoong [1 ]
Zhang, Hemin [2 ]
Kim, Jeong Hun [1 ]
Byun, Woo Jin [1 ]
Lee, Jae Sung [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Energy & Chem Engn, 50 UNIST Gil, Ulsan 44919, South Korea
[2] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
来源
NANOSCALE ADVANCES | 2022年 / 4卷 / 06期
关键词
HYDROGEN-PRODUCTION; OXIDATION; FILMS; NANOSTRUCTURES; PERFORMANCE; NANORODS; SURFACE; METAL;
D O I
10.1039/d2na00029f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A unique two-step co-doping strategy of in situ fluorine doping followed by ex situ titanium doping enhances the performance of the hematite photoanode in photoelectrochemical water splitting much more effectively than single-step co-doping strategies that are either all in situ or all ex situ. The optimized fluorine, titanium co-doped Fe2O3 photoanode without any cocatalyst achieves 1.61 mA cm(-2) at 1.23 V-RHE under 100 mW cm(-2) solar irradiation, which is similar to 2 and 3 times those of titanium or fluorine singly-doped Fe2O3 photoanodes, respectively. The promotional effect is attributed to the synergy of the two dopants, in which the doped fluorine anion substitutes oxygen of Fe2O3 to increase the positive charges of iron sites, while the doped titanium cation substitutes iron to increase free electrons. Moreover, excess titanium on the surface suppresses the drain of in situ doped fluorine and agglomeration of hematite during the high-temperature annealing process, and passivates the surface trap states to further promote the synergy effects of the two dopants.
引用
收藏
页码:1659 / 1667
页数:9
相关论文
共 40 条
[1]   Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be2+ as co-dopant [J].
Annamalai, Alagappan ;
Lee, Hyun Hwi ;
Choi, Sun Hee ;
Lee, Su Yong ;
Gracia-Espino, Eduardo ;
Subramanian, Arunprabaharan ;
Park, Jaedeuk ;
Kong, Ki-jeong ;
Jang, Jum Suk .
SCIENTIFIC REPORTS, 2016, 6
[2]   Synthesis and anion exchange of tunnel structure akaganeite [J].
Cai, J ;
Liu, J ;
Gao, Z ;
Navrotsky, A ;
Suib, SL .
CHEMISTRY OF MATERIALS, 2001, 13 (12) :4595-4602
[3]   DETERMINATION OF FLAT-BAND POTENTIAL OF A SEMICONDUCTOR IN CONTACT WITH A METAL OR AN ELECTROLYTE FROM MOTT-SCHOTTKY PLOT [J].
CARDON, F ;
GOMES, WP .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1978, 11 (04) :L63-L67
[4]  
Dotan H, 2013, NAT MATER, V12, P158, DOI [10.1038/NMAT3477, 10.1038/nmat3477]
[5]   Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger [J].
Dotan, Hen ;
Sivula, Kevin ;
Graetzel, Michael ;
Rothschild, Avner ;
Warren, Scott C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :958-964
[6]   Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting [J].
Hu, Yong-Sheng ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Hazen, Daniel ;
Park, Jung-Nam ;
McFarland, Eric W. .
CHEMISTRY OF MATERIALS, 2008, 20 (12) :3803-3805
[7]   Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays [J].
Jeon, Tae Hwa ;
Moon, Gun-hee ;
Park, Hyunwoong ;
Choi, Wonyong .
NANO ENERGY, 2017, 39 :211-218
[8]   Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition [J].
Jubb, Aaron M. ;
Allen, Heather C. .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (10) :2804-2812
[9]  
Kim J. Y., 2014, ADV ENERGY MATER, V4, DOI DOI 10.1002/AENM.201400476
[10]   Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting [J].
Kim, Jae Young ;
Magesh, Ganesan ;
Youn, Duck Hyun ;
Jang, Ji-Wook ;
Kubota, Jun ;
Domen, Kazunari ;
Lee, Jae Sung .
SCIENTIFIC REPORTS, 2013, 3