CRISPR/Cas9-Mediated Knockout of miR-130b Affects Mono- and Polyunsaturated Fatty Acid Content via PPARG-PGC1α Axis in Goat Mammary Epithelial Cells

被引:9
作者
Huang, Lian [1 ]
Luo, Jun [1 ]
Song, Ning [1 ]
Gao, Wenchang [1 ]
Zhu, Lu [1 ]
Yao, Weiwei [1 ]
机构
[1] Northwest A&F Univ, Coll Anim Sci & Technol, Shaanxi Key Lab Mol Biol Agr, Yangling 712100, Xianyang, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas9-mediated knockout; miRNA-130b; fatty acid synthesis; PPARG-PGC1 alpha axis; LIPID-ACCUMULATION; GENE; METABOLISM; FASN; ASSOCIATIONS; POLYMORPHISM; EXPRESSION; MICE;
D O I
10.3390/ijms23073640
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNA (miRNA)-130b, as a regulator of lipid metabolism in adipose and mammary gland tissues, is actively involved in lipogenesis, but its endogenous role in fatty acid synthesis remains unclear. Here, we aimed to explore the function and underlying mechanism of miR-130b in fatty acid synthesis using the CRISPR/Cas9 system in primary goat mammary epithelial cells (GMEC). A single clone with deletion of 43 nucleotides showed a significant decrease in miR-130b-5p and miR-130b-3p abundances and an increase of target genes PGCla and PPARG. In addition, knockout of miR-130b promoted triacylglycerol (TAG) and cholesterol accumulation, and decreased the proportion of monounsaturated fatty acids (MUFA) C16:1, C18:1 and polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4, C20:5, C22:6. Similarly, the abundance of fatty acid synthesis genes ACACA and FASN and transcription regulators SREBP1c and SREBP2 was elevated. Subsequently, interference with PPARG instead of PGC1 alpha in knockout cells restored the effect of miR-130b knockout, suggesting that PPARG is responsible for miR-130b regulating fatty acid synthesis. Moreover, disrupting PPARG inhibits PGC1 alpha transcription and translation. These results reveal that miR-130b directly targets the PPARG-PGC1 alpha axis, to inhibit fatty acid synthesis in GMEC. In conclusion, miR-130b could be a potential molecular regulator for improving the beneficial fatty acids content in goat milk.
引用
收藏
页数:17
相关论文
共 67 条
  • [21] New technologies for improved relevance in miRNA research
    Jacquet, Karine
    Vidal-Cruchez, Olivia
    Rezzonico, Roger
    Nicolini, Victoria J.
    Mograbi, Baharia
    Hofman, Paul
    Vassaux, Georges
    Mari, Bernard
    Brest, Patrick
    [J]. TRENDS IN GENETICS, 2021, 37 (12) : 1060 - 1063
  • [22] PPAR gamma gene - A review
    Janani, C.
    Kumari, B. D. Ranjitha
    [J]. DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2015, 9 (01) : 46 - 50
  • [23] PPARγ Regulates Mouse Meibocyte Differentiation and Lipid Synthesis
    Jester, James V.
    Potma, Eric
    Brown, Donald J.
    [J]. OCULAR SURFACE, 2016, 14 (04) : 484 - 494
  • [24] Jin Xiao-Lu, 2013, Yichuan, V35, P695, DOI 10.3724/SP.J.1005.2013.00695
  • [25] Role of cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease
    Joris, Peter J.
    Mensink, Ronald P.
    [J]. CURRENT ATHEROSCLEROSIS REPORTS, 2016, 18 (07)
  • [26] Eicosapentaenoic acid (EPA) activates PPARγ signaling leading to cell cycle exit, lipid accumulation, and autophagy in human meibomian gland epithelial cells (hMGEC)
    Kim, Sun Woong
    Rho, Chang Rae
    Kim, Jinseor
    Xie, Yilu
    Prince, Richard C.
    Mustafa, Khawla
    Potma, Eric O.
    Brown, Donald J.
    Jester, James, V
    [J]. OCULAR SURFACE, 2020, 18 (03) : 427 - 437
  • [27] Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis
    Kim, Young-Kook
    Kim, Boseon
    Kim, V. Narry
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (13) : E1881 - E1889
  • [28] PPARγ coactivator-1α contributes to exercise-induced regulation of intramuscular lipid droplet programming in mice and humans
    Koves, Timothy R.
    Sparks, Lauren M.
    Kovalik, J. P.
    Mosedale, Merrie
    Arumugam, Ramamani
    DeBalsi, Karen L.
    Everingham, Karen
    Thorne, Leigh
    Phielix, Esther
    Meex, Ruth C.
    Kien, C. Lawrence
    Hesselink, Matthijs K. C.
    Schrauwen, Patrick
    Muoio, Deborah M.
    [J]. JOURNAL OF LIPID RESEARCH, 2013, 54 (02) : 522 - 534
  • [29] Long Noncoding RNA lnc-HC Regulates PPARγ-Mediated Hepatic Lipid Metabolism through miR-130b-3p
    Lan, Xi
    Wu, Litao
    Wu, Nan
    Chen, Qian
    Li, Yue
    Du, Xiaojuan
    Wei, Chenxi
    Feng, Lina
    Li, Yazhao
    Osoro, Ezra Kombo
    Sun, Mengyao
    Ning, Qilan
    Yan, Xiaofei
    Yang, Xudong
    Li, Dongmin
    Lu, Shemin
    [J]. MOLECULAR THERAPY-NUCLEIC ACIDS, 2019, 18 : 954 - 965
  • [30] CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function
    Lataniotis, Lazaros
    Albrecht, Andreas
    Kok, Fatma O.
    Monfries, Clinton A. L.
    Benedetti, Lorena
    Lawson, Nathan D.
    Hughes, Simon M.
    Steinhofel, Kathleen
    Mayr, Manuel
    Zampetaki, Anna
    [J]. SCIENTIFIC REPORTS, 2017, 7