Superlinear threshold detectors in quantum cryptography

被引:68
作者
Lydersen, Lars [1 ,2 ]
Jain, Nitin [3 ,4 ]
Wittmann, Christoffer [3 ,4 ]
Maroy, Oystein [1 ,2 ]
Skaar, Johannes [1 ,2 ]
Marquardt, Christoph [3 ,4 ]
Makarov, Vadim [1 ,2 ]
Leuchs, Gerd [3 ,4 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
[2] Univ Grad Ctr, NO-2027 Kjeller, Norway
[3] Max Planck Inst Sci Light, DE-91058 Erlangen, Germany
[4] Univ Erlangen Nurnberg, Inst Opt Informat & Photon, DE-91058 Erlangen, Germany
关键词
KEY DISTRIBUTION; DETECTION EFFICIENCY; BLINDING ATTACK; STATES ATTACK; SECURITY; PROOF; TIME;
D O I
10.1103/PhysRevA.84.032320
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systems using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.
引用
收藏
页数:7
相关论文
共 56 条
[1]   Semiempirical Modeling of Dark Count Rate and Quantum Efficiency of Superconducting Nanowire Single-Photon Detectors [J].
Akhlaghi, Mohsen Keshavarz ;
Majedi, Amir Hamed .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) :361-366
[2]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[4]   Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate [J].
Chau, HF .
PHYSICAL REVIEW A, 2002, 66 (06) :4
[5]   Evolution and prospects for single-photon avalanche diodes and quenching circuits [J].
Cova, S ;
Ghioni, M ;
Lotito, A ;
Rech, I ;
Zappa, F .
JOURNAL OF MODERN OPTICS, 2004, 51 (9-10) :1267-1288
[6]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[7]  
Fung CHF, 2009, QUANTUM INF COMPUT, V9, P131
[8]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2
[9]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[10]  
GISIN N, ARXIVQUANTPH0411022V