Composites with invisible inclusions: Eigenvalues of R-linear problem

被引:0
作者
Mityushev, V. V. [1 ]
机构
[1] Pedag Univ, Dept Comp Sci & Computat Methods, Krakow, Poland
关键词
invisible inclusions; R-linear problem; metamaterials; univalent eigenfunction; ANTIPLANE ELASTICITY; CIRCULAR-CYLINDERS; COATED INCLUSIONS; CONDUCTIVITY; FIELDS;
D O I
10.1017/S0956792516000152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new eigenvalue R-linear problem arisen in the theory of metamaterials and neutral inclusions is reduced to integral equations. The problem is constructively investigated for circular non-overlapping inclusions. An asymptotic formula for eigenvalues is deduced when the radii of inclusions tend to zero. The nodal domains conjecture related to univalent eigenfunctions is posed. Demonstration of the conjecture allows to justify that a set of inclusions can be made neutral by surrounding it with an appropriate coating.
引用
收藏
页码:796 / 806
页数:11
相关论文
共 32 条
[1]   Achieving transparency with plasmonic and metamaterial coatings -: art. no. 016623 [J].
Alù, A ;
Engheta, N .
PHYSICAL REVIEW E, 2005, 72 (01)
[2]   Spectral Theory of a Neumann-Poincar,-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance [J].
Ammari, Habib ;
Ciraolo, Giulio ;
Kang, Hyeonbae ;
Lee, Hyundae ;
Milton, Graeme W. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (02) :667-692
[3]   Enhancement of Near Cloaking Using Generalized Polarization Tensors Vanishing Structures. Part I: The Conductivity Problem [J].
Ammari, Habib ;
Kang, Hyeonbae ;
Lee, Hyundae ;
Lim, Mikyoung .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (01) :253-266
[4]   Two-dimensional Green's tensor for gyrotropic clusters composed of circular cylinders [J].
Asatryan, Ara A. ;
Botten, Lindsay C. ;
Fang, Kejie ;
Fan, Shanhui ;
McPhedran, Ross C. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (10) :2294-2303
[5]  
Banuelos R., 2010, OPERATOR THEORY ITS, P19
[6]   Poincare-Steklov integral equations and the Riemann monodromy problem [J].
Bogatyrev, AB .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2000, 34 (02) :86-97
[7]  
BOJARSKI B, 1960, SOOBSCH AN GRUZSSR, V25, P385
[8]  
Bojarski B., 2013, J MATH SCI-U TOKYO, V189, P68
[9]  
Chavel I., 1984, EIGENVALUES RIEMANNI, P7
[10]   Making waves round a structured cloak: lattices, negative refraction and fringes [J].
Colquitt, D. J. ;
Jones, I. S. ;
Movchan, N. V. ;
Movchan, A. B. ;
Brun, M. ;
McPhedran, R. C. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2157)