A constructive monotone iterative method for second-order BVP in the presence of lower and upper solutions

被引:49
作者
Cherpion, M
De Coster, C
Habets, P
机构
[1] Univ Catholique Louvain, Inst Math Pure & Appl, B-1348 Louvain, Belgium
[2] Univ Littoral Cote Opale, Ctr Univ Mi Voix, F-62228 Calais, France
关键词
monotone iterative method; lower and upper solutions; Neumann problem; computable approximations;
D O I
10.1016/S0096-3003(00)00058-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the monotone approximations of solutions of boundary value problems such as -u"+f(t,u,u')=0, u'(0)=u'(1)=0. We consider linear iterative scheme in case f is Lipschitz in u' and satisfies a one-sided Lipschitz condition in u. The initial approximations are lower and upper solutions which can be ordered one way (alpha less than or equal to beta) or the other (alpha greater than or equal to beta). We also consider the periodic and the Dirichlet problems. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:75 / 91
页数:17
相关论文
共 17 条
[1]   ELLIPTIC EQUATIONS WITH NON-INVERTIBLE FREDHOLM LINEAR PART AND BOUNDED NONLINEARITIES [J].
AMANN, H ;
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (02) :179-194
[2]  
Babkin B.N., 1954, PRIKL MAT MEKH, V18, P239
[4]   MINIMAL AND MAXIMAL SOLUTIONS OF NONLINEAR BOUNDARY-VALUE PROBLEMS [J].
BERNFELD, SR ;
CHANDRA, J .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (01) :13-20
[5]  
BGENDOZJAN GV, 1964, IZV SSR JIZ MATE NAU, V17, P21
[6]   Optimal existence conditions for φ-Laplacian equations with upper and lower solutions in the reversed order [J].
Cabada, A ;
Habets, P ;
Pouso, RL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :385-401
[7]   A positive operator approach to the Neumann problem for a second order ordinary differential equation [J].
Cabada, A ;
Sanchez, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) :774-785
[8]   Monotone method for the Neumann problem with lower and upper solutions in the reverse order [J].
Cabada, A ;
Habets, P ;
Lois, S .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 117 (01) :1-14
[9]  
Cherpion M., 1999, DIFFERENTIAL INTEGRA, V12, P309
[10]   Existence and localization of solution for second order elliptic BVP in presence of lower and upper solutions without any order [J].
De Coster, C ;
Henrard, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :420-452