Soliton asymptotics of nondecaying solutions of the modified Kadomtsev-Petviashvili-I equation

被引:2
作者
Anders, I
Boutet de Monvel, A
机构
[1] Inst Low Temp Phys, Div Math, UA-310164 Kharkov, Ukraine
[2] Univ Paris 07, Inst Math, F-75251 Paris 05, France
关键词
D O I
10.1063/1.1329155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of nondecaying real solutions of the mKP-I equation, vanishing for x -->+infinity, and we obtain asymptotic formulas as t --> infinity in the form of an infinite series of asymptotic solitons with curved lines of constant phase and varying amplitude and width. (C) 2001 American Institute of Physics.
引用
收藏
页码:3673 / 3690
页数:18
相关论文
共 18 条
[1]   CURVED ASYMPTOTIC SOLITONS OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
ANDERS, IA ;
KOTLYAROV, VP ;
KHRUSLOV, EY .
THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 99 (01) :402-408
[2]   CURVED ASYMPTOTIC SOLITONS OF KADOMTSEV-PETVIASHVILI-I AND MODIFIED KADOMTSEV-PETVIASHVILI-I EQUATIONS [J].
ANDERS, IA .
PHYSICA D, 1995, 87 (1-4) :160-167
[3]  
ANDERS IA, 1994, MAT FIZ ANAL GEOM, V1, P175
[4]  
[Anonymous], 1994, SPECTRAL OPERATOR TH
[5]  
[Anonymous], 1989, ELEMENTS THEORY FUNC
[6]   Soliton asymptotics of the Cauchy problem solution for the Toda lattice [J].
deMonvel, AB ;
Egorova, I ;
Khruslov, E .
INVERSE PROBLEMS, 1997, 13 (02) :223-237
[7]  
GUREVICH AV, 1973, ZH EKSP TEOR FIZ+, V65, P590
[8]  
GUREVICH AV, 1973, JETP LETT+, V17, P268
[9]   ASYMPTOTICS OF SOLUTION OF CAUCHY-PROBLEM FOR KORTEWEG-DEVRIES EQUATION WITH INITIAL DATA OF STEP TYPE [J].
HRUSLOV, EJ .
MATHEMATICS OF THE USSR-SBORNIK, 1976, 28 (02) :229-248
[10]  
KHRUSLOV EY, 1996, THEOR MATH PHYS, V108, P205