Stochastic quantization of time-dependent systems by the Haba and Kleinert method

被引:2
作者
Haas, F [1 ]
机构
[1] Univ Vale Rio dos Sinos, BR-93022000 Sao Leopoldo, RS, Brazil
关键词
stochastic quantization; time-dependent harmonic oscillator; Schrodinger equation; classical simulation of quantum systems;
D O I
10.1007/s10773-005-1429-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The stochastic quantization method recently developed by Haba and Kleinert is extended to non-autonomous mechanical systems, in the case of the time-dependent harmonic oscillator. In comparison with the autonomous case, the quantization procedure involves the solution of a nonlinear, auxiliary equation. Using a rescaling transformation, the Schrodinger equation for the time-dependent harmonic oscillator is obtained after averaging of a classical stochastic differential equation.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1996, QUANTUM DICE
[2]   Nelsonian mechanics revisited [J].
Bacciagaluppi, G .
FOUNDATIONS OF PHYSICS LETTERS, 1999, 12 (01) :1-16
[3]   Quantum trajectories, state diffusion, and time-asymmetric eventum mechanics [J].
Belavkin, VP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (10) :2461-2485
[4]  
Espinoza P. B., 2000, ARXIVMATHPH0002005
[5]  
Gaioli FH, 1997, INT J THEOR PHYS, V36, P2167, DOI 10.1007/BF02768930
[6]   Noether symmetries for two-dimensional charged particle motion [J].
Haas, F ;
Goedert, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (39) :6837-6852
[7]   Anisotropic Bose-Einstein condensates and completely integrable dynamical systems [J].
Haas, F .
PHYSICAL REVIEW A, 2002, 65 (03) :6
[8]   Schrodinger wave functions from classical trajectories [J].
Haba, Z ;
Kleinert, H .
PHYSICS LETTERS A, 2002, 294 (3-4) :139-142
[9]   AN EXACT QUANTUM THEORY OF TIME-DEPENDENT HARMONIC OSCILLATOR AND OF A CHARGED PARTICLE IN A TIME-DEPENDENT ELECTROMAGNETIC FIELD [J].
LEWIS, HR ;
RIESENFELD, WB .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1458-+