Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect

被引:30
作者
Shan, J. [1 ]
Cornelissen, L. J. [1 ]
Liu, J. [1 ]
Ben Youssef, J. [2 ]
Liang, L. [1 ]
van Wees, B. J. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Phys Nanodevices, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Univ Bretagne Occidentale, Lab STICC UMR 6285, 6 Ave Le Gorgeu, F-29285 Brest, France
关键词
THERMAL-CONDUCTIVITY; ROOM-TEMPERATURE; CALORITRONICS; TRANSPORT; INSULATOR; GARNET;
D O I
10.1103/PhysRevB.96.184427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The nonlocal transport of thermally generated magnons not only unveils the underlying mechanism of the spin Seebeck effect, but also allows for the extraction of the magnon relaxation length (lambda(m)) in a magnetic material, the average distance over which thermal magnons can propagate. In this study, we experimentally explore in yttrium iron garnet (YIG)/platinum systems much further ranges compared with previous investigations. We observe that the nonlocal SSE signals at long distances (d) clearly deviate from a typical exponential decay. Instead, they can be dominated by the nonlocal generation of magnon accumulation as a result of the temperature gradient present away from the heater, and decay geometrically as 1/d(2). We emphasize the importance of looking only into the exponential regime (i.e., the intermediate distance regime) to extract lambda(m). With this principle, we study lambda(m) as a function of temperature in two YIG films which are 2.7 and 50 mu m in thickness, respectively. We find lambda(m) to be around 15 mu m at room temperature and it increases to 40 mu m at T = 3.5 K. Finite element modeling results agree with experimental studies qualitatively, showing also a geometrical decay beyond the exponential regime. Based on both experimental and modeling results, we put forward a general guideline for extracting lambda(m) from the nonlocal spin Seebeck effect.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect [J].
Agrawal, M. ;
Vasyuchka, V. I. ;
Serga, A. A. ;
Kirihara, A. ;
Pirro, P. ;
Langner, T. ;
Jungfleisch, M. B. ;
Chumak, A. V. ;
Papaioannou, E. Th. ;
Hillebrands, B. .
PHYSICAL REVIEW B, 2014, 89 (22)
[2]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/NMAT3301, 10.1038/nmat3301]
[3]   Spin Caloritronics [J].
Bauer, Gerrit E. W. ;
MacDonald, Allan H. ;
Maekawa, Sadamichi .
SOLID STATE COMMUNICATIONS, 2010, 150 (11-12) :459-460
[4]   Spin caloritronics [J].
Boona, Stephen R. ;
Myers, Roberto C. ;
Heremans, Joseph P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :885-910
[5]   Finite-element theory of transport in ferromagnet-normal metal systems [J].
Brataas, A ;
Nazarov, YV ;
Bauer, GEW .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2481-2484
[6]   Nonlocal magnon-polaron transport in yttrium iron garnet [J].
Cornelissen, L. J. ;
Oyanagi, K. ;
Kikkawa, T. ;
Qiu, Z. ;
Kuschel, T. ;
Bauer, G. E. W. ;
van Wees, B. J. ;
Saitoh, E. .
PHYSICAL REVIEW B, 2017, 96 (10)
[7]   Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet [J].
Cornelissen, L. J. ;
Shan, J. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2016, 94 (18)
[8]   Magnon spin transport driven by the magnon chemical potential in a magnetic insulator [J].
Cornelissen, L. J. ;
Peters, K. J. H. ;
Bauer, G. E. W. ;
Duine, R. A. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2016, 94 (01)
[9]   Magnetic field dependence of the magnon spin diffusion length in the magnetic insulator yttrium iron garnet [J].
Cornelissen, L. J. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2016, 93 (02)
[10]  
Cornelissen LJ, 2015, NAT PHYS, V11, P1022, DOI [10.1038/NPHYS3465, 10.1038/nphys3465]