N-extension of double-graded supersymmetric and superconformal quantum mechanics

被引:30
作者
Aizawa, N. [1 ]
Amakawa, K. [1 ]
Doi, S. [1 ]
机构
[1] Osaka Prefecture Univ, Dept Phys Sci, Nakamozu Campus, Sakai, Osaka 5998531, Japan
关键词
supersymmetric quantum mechanics; color superalgebra; conformal mechanics; ALGEBRAS; GEOMETRY; SITTER;
D O I
10.1088/1751-8121/ab661c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the recent paper (Bruce and Duplij 2019 (arXiv:1904.06975 [math-ph])), Bruce and Duplij introduced a double-graded version of supersymmetric quantum mechanics (SQM). It is an extension of Lie superalgebraic nature of SQM to a -graded superalgebra. In this work, we propose an extension of Bruce-Duplij model to higher values of . Furthermore, it is shown that our construction of double-graded SQM is a special case of the method which converts a given Lie superalgebra to a -graded superalgebra. By employing this method one may convert a model of superconformal mechanics to its double-graded version. The simplest example of double-graded superconformal mechanics is studied in some detail.
引用
收藏
页数:14
相关论文
共 40 条
[11]   THE GRADED DIFFERENTIAL GEOMETRY OF MIXED SYMMETRY TENSORS [J].
Bruce, Andrew James ;
Ibarguengoytia, Eduardo .
ARCHIVUM MATHEMATICUM, 2019, 55 (02) :123-137
[12]   On a Z2n-Graded Version of Supersymmetry [J].
Bruce, Andrew James .
SYMMETRY-BASEL, 2019, 11 (01)
[13]  
Carrion HL, 2003, J HIGH ENERGY PHYS
[14]  
Covolo T, 2016, ARXIV160800949MATHDG
[15]   Splitting theorem for Z2n-supermanifolds [J].
Covolo, Tiffany ;
Grabowski, Janusz ;
Poncin, Norbert .
JOURNAL OF GEOMETRY AND PHYSICS, 2016, 110 :393-401
[16]   The category of Z2n-supermanifolds [J].
Covolo, Tiffany ;
Grabowski, Janusz ;
Poncin, Norbert .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (07)
[17]   CONFORMAL INVARIANCE IN QUANTUM-MECHANICS [J].
DEALFARO, V ;
FUBINI, S ;
FURLAN, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 34 (04) :569-612
[18]   Superconformal mechanics [J].
Fedoruk, Sergey ;
Ivanov, Evgeny ;
Lechtenfeld, Olaf .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
[19]   Conformal mechanics [J].
Gonera, Joanna .
ANNALS OF PHYSICS, 2013, 335 :61-77
[20]   GEOMETRY OF CONFORMAL MECHANICS [J].
IVANOV, E ;
KRIVONOS, S ;
LEVIANT, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (04) :345-354