Monolayer atomic crystal molecular superlattices

被引:378
作者
Wang, Chen [1 ]
He, Qiyuan [2 ]
Halim, Udayabagya [2 ]
Liu, Yuanyue [3 ,9 ,10 ]
Zhu, Enbo [1 ]
Lin, Zhaoyang [2 ]
Xiao, Hai [3 ]
Duan, Xidong [4 ]
Feng, Ziying [2 ]
Cheng, Rui [1 ]
Weiss, Nathan [1 ]
Ye, Guojun [5 ,6 ]
Huang, Yun-Chiao [1 ]
Wu, Hao [1 ]
Cheng, Hung-Chieh [1 ]
Shakir, Imran [7 ]
Liao, Lei [4 ]
Chen, Xianhui [5 ,6 ]
Goddard, William A. [3 ]
Huang, Yu [1 ,8 ]
Duan, Xiangfeng [2 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[4] Hunan Univ, Sch Phys & Elect, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[5] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[7] King Saud Univ, Coll Engn, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia
[8] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[9] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[10] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; EXFOLIATED BLACK PHOSPHORUS; EPITAXIAL-GROWTH; BAND-GAP; HETEROSTRUCTURES; GRAPHENE; 1ST-PRINCIPLES; SEMICONDUCTOR; INTERCALATION; PASSIVATION;
D O I
10.1038/nature25774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials(1-3). Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility(4-8). The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures(9-11) but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures(12-14), but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.
引用
收藏
页码:231 / +
页数:16
相关论文
共 50 条
[41]   Unveiling the structural origin of the high carrier mobility of a molecular monolayer on boron nitride [J].
Xu, Rui ;
He, Daowei ;
Zhang, Yuhan ;
Wu, Bing ;
Liu, Fengyuan ;
Meng, Lan ;
Liu, Jun-Fang ;
Wu, Qisheng ;
Shi, Yi ;
Wang, Jinlan ;
Nie, Jia-Cai ;
Wang, Xinran ;
He, Lin .
PHYSICAL REVIEW B, 2014, 90 (22)
[42]   Boron nitride monolayer growth on vicinal Ni(111) surfaces systematically studied with a curved crystal [J].
Fernandez, L. ;
Makarova, A. A. ;
Laubschat, C. ;
Vyalikh, D. V. ;
Usachov, D. Yu ;
Ortega, J. E. ;
Schiller, F. .
2D MATERIALS, 2019, 6 (02)
[43]   Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics [J].
Gobbi, Marco ;
Bonacchi, Sara ;
Lian, Jian X. ;
Vercouter, Alexandre ;
Bertolazzi, Simone ;
Zyska, Bjoern ;
Timpel, Melanie ;
Tatti, Roberta ;
Olivier, Yoann ;
Hecht, Stefan ;
Nardi, Marco V. ;
Beljonne, David ;
Orgiu, Emanuele ;
Samori, Paolo .
NATURE COMMUNICATIONS, 2018, 9
[44]   The fracture behaviors of monolayer phosphorene with grain boundaries under tension: a molecular dynamics study [J].
Guo, Yangyang ;
Qiao, Chong ;
Wang, Aihua ;
Zhang, Jinping ;
Wang, Songyou ;
Su, Wan-Sheng ;
Jia, Yu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (30) :20562-20570
[45]   Solution-Processed Monolayer Molecular Crystals: From Precise Preparation to Advanced Applications [J].
Zhang, Jing ;
Guo, Jing ;
Zhang, Hantang ;
Liu, Jie ;
You, Sheng-Yong ;
Jiang, Lang .
PRECISION CHEMISTRY, 2024, 2 (08) :380-397
[46]   Influence of orbital hybridization on the atomic and electronic structures in hydrogenated monolayer graphene [J].
B. G. Shin ;
D. H. Oh ;
J. R. Ahn .
Journal of the Korean Physical Society, 2012, 60 :816-820
[47]   Controllable Atomic Scale Patterning of Freestanding Monolayer Graphene at Elevated Temperature [J].
Xu, Qiang ;
Wu, Meng-Yue ;
Schneider, Gregory F. ;
Houben, Lothar ;
Malladi, Sairam K. ;
Dekker, Cees ;
Yucelen, Emrah ;
Dunin-Borkowski, Rafal E. ;
Zandbergen, Henny W. .
ACS NANO, 2013, 7 (02) :1566-1572
[48]   Selective atomic layer deposition onto directly transferred monolayer graphene [J].
Kim, Jangheon ;
Kim, Soohyun ;
Jung, Wonsuk .
MATERIALS LETTERS, 2016, 165 :45-49
[49]   Dimeric configurations of atomic hydrogen adsorbed on a monolayer hexagonal boron nitride [J].
Shi, Jianzhang ;
Hao, Ruirui ;
Ji, Linan ;
Feng, Shujian ;
Sun, Tianye .
CHEMICAL PHYSICS LETTERS, 2017, 685 :171-176
[50]   Direct Imaging of Kinetic Pathways of Atomic Diffusion in Monolayer Molybdenum Disulfide [J].
Hong, Jinhua ;
Pan, Yuhao ;
Hu, Zhixin ;
Lv, Danhui ;
Jin, Chuanhong ;
Ji, Wei ;
Yuan, Jun ;
Zhang, Ze .
NANO LETTERS, 2017, 17 (06) :3383-3390