Monolayer atomic crystal molecular superlattices

被引:378
作者
Wang, Chen [1 ]
He, Qiyuan [2 ]
Halim, Udayabagya [2 ]
Liu, Yuanyue [3 ,9 ,10 ]
Zhu, Enbo [1 ]
Lin, Zhaoyang [2 ]
Xiao, Hai [3 ]
Duan, Xidong [4 ]
Feng, Ziying [2 ]
Cheng, Rui [1 ]
Weiss, Nathan [1 ]
Ye, Guojun [5 ,6 ]
Huang, Yun-Chiao [1 ]
Wu, Hao [1 ]
Cheng, Hung-Chieh [1 ]
Shakir, Imran [7 ]
Liao, Lei [4 ]
Chen, Xianhui [5 ,6 ]
Goddard, William A. [3 ]
Huang, Yu [1 ,8 ]
Duan, Xiangfeng [2 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[4] Hunan Univ, Sch Phys & Elect, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[5] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[7] King Saud Univ, Coll Engn, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia
[8] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[9] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[10] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; EXFOLIATED BLACK PHOSPHORUS; EPITAXIAL-GROWTH; BAND-GAP; HETEROSTRUCTURES; GRAPHENE; 1ST-PRINCIPLES; SEMICONDUCTOR; INTERCALATION; PASSIVATION;
D O I
10.1038/nature25774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials(1-3). Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility(4-8). The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures(9-11) but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures(12-14), but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.
引用
收藏
页码:231 / +
页数:16
相关论文
共 50 条
  • [31] Improving the atomic-resolution AFM imaging of monolayer MoS2 for worn tips: a molecular dynamics study
    Li, Minglin
    Zhuo, Weirong
    Pang, Haosheng
    Lai, Lianfeng
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (05)
  • [32] Investigating the Electrical Properties of Monolayer and Bilayer h-BNs via Atomic Force Microscopy
    Wang, Nan
    Song, Yiding
    Wang, Li
    Liu, Kaihui
    Yang, Ya
    [J]. ADVANCED MATERIALS INTERFACES, 2021, 8 (16):
  • [33] Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene
    Sang, Xiahan
    Xie, Yu
    Lin, Ming-Wei
    Alhabeb, Mohamed
    Van Aken, Katherine L.
    Gogotsi, Yury
    Kent, Paul R. C.
    Xiao, Kai
    Unocic, Raymond R.
    [J]. ACS NANO, 2016, 10 (10) : 9193 - 9200
  • [34] Designing the Iridescences of Biopolymers by Assembly of Photonic Crystal Superlattices
    Wang, Yu
    Li, Meng
    Colusso, Elena
    Li, Wenyi
    Omenetto, Fiorenzo G.
    [J]. ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [35] In Situ Atomic-Scale Studies of the Formation of Epitaxial Pt Nanocrystals on Monolayer Molybdenum Disulfide
    Wang, Shanshan
    Sawada, Hidetaka
    Chen, Qu
    Han, Grace G. D.
    Allen, Christopher
    Kirkland, Angus I.
    Warner, Jamie H.
    [J]. ACS NANO, 2017, 11 (09) : 9057 - 9067
  • [36] Atomic Structures of a Monolayer of AlAs, GaAs, and InAs on Si(111)
    Lee, Geunjung
    Yoon, Young-Gui
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (02) : 251 - 254
  • [37] Atomic and electronic structure of monolayer ferroelectric GeS on Cu(111)
    Zhu, Meng -Long
    Jun, Yang
    Dong, Yu-Lan
    Yuan, Zhou
    Yan, Shao
    Hou, Hai-Liang
    Chen, Zhi-Hui
    Jun, He
    [J]. ACTA PHYSICA SINICA, 2024, 73 (01)
  • [38] Band engineering of honeycomb monolayer CuSe via atomic modification*
    Gao, Lei
    Zhang, Yan-Fang
    Sun, Jia-Tao
    Du, Shixuan
    [J]. CHINESE PHYSICS B, 2021, 30 (10)
  • [39] Atomic mechanism of the phase transition in monolayer bismuthene on copper oxide
    Zhou, Dechun
    Yang, Chao
    Bu, Saiyu
    Pan, Feng
    Si, Nan
    He, Pimo
    Ji, Qingmin
    Lu, Yunhao
    Niu, Tianchao
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (06)
  • [40] Atomic Structure and Spectroscopy of Single Metal (Cr, V) Substitutional Dopants in Monolayer MoS2
    Robertson, Alex W.
    Lin, Yung-Chang
    Wang, Shanshan
    Sawada, Hidetaka
    Allen, Christopher S.
    Chen, Qu
    Lee, Sungwoo
    Lee, Gun-Do
    Lee, Joohee
    Han, Seungwu
    Yoon, Euijoon
    Kirkland, Angus I.
    Kim, Heeyeon
    Suenaga, Kazu
    Warner, Jamie H.
    [J]. ACS NANO, 2016, 10 (11) : 10227 - 10236