Monolayer atomic crystal molecular superlattices

被引:378
作者
Wang, Chen [1 ]
He, Qiyuan [2 ]
Halim, Udayabagya [2 ]
Liu, Yuanyue [3 ,9 ,10 ]
Zhu, Enbo [1 ]
Lin, Zhaoyang [2 ]
Xiao, Hai [3 ]
Duan, Xidong [4 ]
Feng, Ziying [2 ]
Cheng, Rui [1 ]
Weiss, Nathan [1 ]
Ye, Guojun [5 ,6 ]
Huang, Yun-Chiao [1 ]
Wu, Hao [1 ]
Cheng, Hung-Chieh [1 ]
Shakir, Imran [7 ]
Liao, Lei [4 ]
Chen, Xianhui [5 ,6 ]
Goddard, William A. [3 ]
Huang, Yu [1 ,8 ]
Duan, Xiangfeng [2 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[4] Hunan Univ, Sch Phys & Elect, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[5] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[7] King Saud Univ, Coll Engn, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia
[8] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[9] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[10] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; EXFOLIATED BLACK PHOSPHORUS; EPITAXIAL-GROWTH; BAND-GAP; HETEROSTRUCTURES; GRAPHENE; 1ST-PRINCIPLES; SEMICONDUCTOR; INTERCALATION; PASSIVATION;
D O I
10.1038/nature25774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials(1-3). Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility(4-8). The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures(9-11) but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures(12-14), but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.
引用
收藏
页码:231 / +
页数:16
相关论文
共 50 条
  • [21] In situ atomic-scale observation of monolayer graphene growth from SiC
    Kaihao Yu
    Wen Zhao
    Xing Wu
    Jianing Zhuang
    Xiaohui Hu
    Qiubo Zhang
    Jun Sun
    Tao Xu
    Yang Chai
    Feng Ding
    Litao Sun
    Nano Research, 2018, 11 : 2809 - 2820
  • [22] In situ atomic-scale observation of monolayer graphene growth from SiC
    Yu, Kaihao
    Zhao, Wen
    Wu, Xing
    Zhuang, Jianing
    Hu, Xiaohui
    Zhang, Qiubo
    Sun, Jun
    Xu, Tao
    Chai, Yang
    Ding, Feng
    Sun, Litao
    NANO RESEARCH, 2018, 11 (05) : 2809 - 2820
  • [23] Molecular collapse in monolayer graphene
    Van Pottelberge, R.
    Moldovan, D.
    Milovanovic, S. P.
    Peeters, F. M.
    2D MATERIALS, 2019, 6 (04):
  • [24] Monolayer molecular crystals and devices
    Liu, Jie
    Hu, Wenping
    Jiang, Lang
    SCIENCE BULLETIN, 2023, 68 (14) : 1474 - 1477
  • [25] Fluorescence Concentric Triangles: A Case of Chemical Heterogeneity in WS2 Atomic Monolayer
    Liu, Hongwei
    Lu, Junpeng
    Ho, Kenneth
    Hu, Zhenliang
    Dang, Zhiya
    Carvalho, Alexandra
    Tan, Hui Ru
    Tok, Eng Soon
    Sow, Chorng Haur
    NANO LETTERS, 2016, 16 (09) : 5559 - 5567
  • [26] Topological valley plasmons in twisted monolayer-bilayer graphene moiré superlattices
    Luo, Weiwei
    Fan, Jiang
    Kuzmenko, Alexey B.
    Cai, Wei
    Xu, Jingjun
    PHYSICAL REVIEW B, 2024, 110 (03)
  • [27] Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3x3): A scanning tunneling microscopy study
    Hiebel, F.
    Mallet, P.
    Magaud, L.
    Veuillen, J. -Y.
    PHYSICAL REVIEW B, 2009, 80 (23):
  • [28] Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping
    Bafekry, A.
    Faraji, M.
    Fadlallah, Mohamed M.
    Khatibani, A. Bagheri
    Ziabari, A. abdolahzadeh
    Ghergherehchi, M.
    Nedaei, Sh
    Shayesteh, S. Farjami
    Gogova, D.
    APPLIED SURFACE SCIENCE, 2021, 559 (559)
  • [29] Simulation of Electron Transport in Atomic Monolayer Semiconductor FETs
    Tsuchiya, Hideaki
    Kaneko, Shiro
    Mori, Noriyasu
    Hirai, Hideki
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2015, 2 (01): : 127 - 152
  • [30] Graphite edge controlled registration of monolayer MoS2 crystal orientation
    Lu, Chun-I
    Butler, Christopher John
    Huang, Jing-Kai
    Hsing, Cheng-Rong
    Yang, Hung-Hsiang
    Chu, Yu-Hsun
    Luo, Chi-Hung
    Sun, Yung-Che
    Hsu, Shih-Hao
    Yang, Kui-Hong Ou
    Wei, Ching-Ming
    Li, Lain-Jong
    Lin, Minn-Tsong
    APPLIED PHYSICS LETTERS, 2015, 106 (18)