Monolayer atomic crystal molecular superlattices

被引:378
|
作者
Wang, Chen [1 ]
He, Qiyuan [2 ]
Halim, Udayabagya [2 ]
Liu, Yuanyue [3 ,9 ,10 ]
Zhu, Enbo [1 ]
Lin, Zhaoyang [2 ]
Xiao, Hai [3 ]
Duan, Xidong [4 ]
Feng, Ziying [2 ]
Cheng, Rui [1 ]
Weiss, Nathan [1 ]
Ye, Guojun [5 ,6 ]
Huang, Yun-Chiao [1 ]
Wu, Hao [1 ]
Cheng, Hung-Chieh [1 ]
Shakir, Imran [7 ]
Liao, Lei [4 ]
Chen, Xianhui [5 ,6 ]
Goddard, William A. [3 ]
Huang, Yu [1 ,8 ]
Duan, Xiangfeng [2 ,8 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[4] Hunan Univ, Sch Phys & Elect, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[5] Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[7] King Saud Univ, Coll Engn, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia
[8] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[9] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[10] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; EXFOLIATED BLACK PHOSPHORUS; EPITAXIAL-GROWTH; BAND-GAP; HETEROSTRUCTURES; GRAPHENE; 1ST-PRINCIPLES; SEMICONDUCTOR; INTERCALATION; PASSIVATION;
D O I
10.1038/nature25774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials(1-3). Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility(4-8). The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures(9-11) but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures(12-14), but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.
引用
收藏
页码:231 / +
页数:16
相关论文
共 50 条
  • [1] 2D atomic crystal molecular superlattices by soft plasma intercalation
    Zhang, Lufang
    Nan, Haiyan
    Zhang, Xiumei
    Liang, Qifeng
    Du, Aijun
    Ni, Zhenhua
    Gu, Xiaofeng
    Ostrikov, Kostya
    Xiao, Shaoqing
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Atomic Defects and Doping of Monolayer NbSe2
    Nguyen, Lan
    Komsa, Hannu-Pekka
    Khestanova, Ekaterina
    Kashtiban, Reza J.
    Peters, Jonathan J. P.
    Lawlor, Sean
    Sanchez, Ana M.
    Sloan, Jeremy
    Gorbachev, Roman V.
    Grigorieva, Irma V.
    Krasheninnikov, Arkady V.
    Haigh, Sarah J.
    ACS NANO, 2017, 11 (03) : 2894 - 2904
  • [3] Capillary-Confinement Crystallization for Monolayer Molecular Crystal Arrays
    Liu, Jie
    Yu, Yamin
    Liu, Jie
    Li, Tao
    Li, Chunlei
    Zhang, Jing
    Hu, Wenping
    Liu, Yunqi
    Jiang, Lang
    ADVANCED MATERIALS, 2022, 34 (07)
  • [4] Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices
    Li, Xiaodan
    Wu, Shunqing
    Zhou, Sen
    Zhu, Zizhong
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 9
  • [5] Monolayer Semiconductor Superlattices with High Optical Absorption
    Elrafei, Sara A.
    Heijnen, Lennart M.
    Godiksen, Rasmus H.
    Curto, Alberto G.
    ACS PHOTONICS, 2024, 11 (07): : 2587 - 2594
  • [6] Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate
    Dong, Li
    Wang, Aiwei
    Li, En
    Wang, Qin
    Li, Geng
    Huan, Qing
    Gao, Hong-Jun
    CHINESE PHYSICS LETTERS, 2019, 36 (02)
  • [7] Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions
    Wang Xing-Yue
    Zhang Hui
    Ruan Zi-Lin
    Hao Zhen-Liang
    Yang Xiao-Tian
    Cai Jin-Ming
    Lu Jian-Chen
    ACTA PHYSICA SINICA, 2020, 69 (11)
  • [8] Piezoelectric electrostatic superlattices in monolayer MoS2
    Ramasubramaniam, Ashwin
    Naveh, Doron
    PHYSICAL REVIEW MATERIALS, 2024, 8 (01):
  • [9] Solvent-Dependent Intercalation and Molecular Configurations in Metallocene-Layered Crystal Superlattices
    Zhu, Yue
    Qian, Yumin
    Ju, Zhengyu
    Peng, Lele
    Yu, Guihua
    NANO LETTERS, 2018, 18 (09) : 6071 - 6075
  • [10] Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene
    Hong, Hyo-Ki
    Jo, Junhyeon
    Hwang, Daeyeon
    Lee, Jongyeong
    Kim, Na Yeon
    Son, Seungwoo
    Kirn, Jung Hwa
    Jin, Mi-Jin
    Jun, Young Chul
    Erni, Rolf
    Kwak, Sang Kyu
    Yoo, Jung-Woo
    Lee, Zonghoon
    NANO LETTERS, 2017, 17 (01) : 120 - 127