Variational Monte Carlo with the multiscale entanglement renormalization ansatz

被引:17
|
作者
Ferris, Andrew J. [1 ,2 ]
Vidal, Guifre [1 ,3 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 16期
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevB.85.165147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monte Carlo sampling techniques have been proposed as a strategy to reduce the computational cost of contractions in tensor network approaches to solving many-body systems. Here, we put forward a variational Monte Carlo approach for the multiscale entanglement renormalization ansatz (MERA), which is a unitary tensor network. Two major adjustments are required compared to previous proposals with nonunitary tensor networks. First, instead of sampling over configurations of the original lattice, made of L sites, we sample over configurations of an effective lattice, which is made of just ln(L) sites. Second, the optimization of unitary tensors must account for their unitary character while being robust to statistical noise, which we accomplish with a modified steepest descent method within the set of unitary tensors. We demonstrate the performance of the variational Monte Carlo MERA approach in the relatively simple context of a finite quantum spin chain at criticality, and discuss future, more challenging applications, including two-dimensional systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fermionic multiscale entanglement renormalization ansatz
    Corboz, Philippe
    Vidal, Guifre
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [2] Quantum Multiscale Entanglement Renormalization Ansatz Channels
    Giovannetti, V.
    Montangero, S.
    Fazio, Rosario
    PHYSICAL REVIEW LETTERS, 2008, 101 (18)
  • [3] Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz
    Evenbly, G.
    Vidal, G.
    PHYSICAL REVIEW LETTERS, 2015, 115 (20)
  • [4] Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz
    Evenbly, G.
    Vidal, G.
    PHYSICAL REVIEW B, 2014, 89 (23):
  • [5] Multiscale Entanglement Renormalization Ansatz: Causality and Error Correction
    Pomarico, Domenico
    DYNAMICS, 2023, 3 (03): : 622 - 635
  • [6] Holographic dynamics from multiscale entanglement renormalization ansatz
    Chua, Victor
    Passias, Vasilios
    Tiwari, Apoorv
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2017, 95 (19)
  • [7] Critical exponents with a multiscale entanglement renormalization Ansatz channel
    Montangero, S.
    Rizzi, M.
    Giovannetti, V.
    Fazio, Rosario
    PHYSICAL REVIEW B, 2009, 80 (11)
  • [8] Simulation of time evolution with multiscale entanglement renormalization ansatz
    Rizzi, Matteo
    Montangero, Simone
    Vidal, Guifre
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [9] Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence
    Bao, Ning
    Cao, ChunJun
    Carroll, Sean M.
    Chatwin-Davies, Aidan
    Hunter-Jones, Nicholas
    Pollack, Jason
    Remmen, Grant N.
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [10] From tree tensor network to multiscale entanglement renormalization ansatz
    Qian, Xiangjian
    Qin, Mingpu
    PHYSICAL REVIEW B, 2022, 105 (20)