Bi-Hamiltonian ordinary differential equations with matrix variables

被引:11
作者
Odesskii, A. V. [1 ]
Rubtsov, V. N. [2 ,3 ]
Sokolov, V. V. [4 ]
机构
[1] Brock Univ, St Catharines, ON L2S 3A1, Canada
[2] Univ Angers, CNRS, LAREMA, Angers, France
[3] Inst Theoret & Expt Phys, Moscow 117259, Russia
[4] RAS, LD Landau Theoret Phys Inst, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
integrable ordinary differential equation with matrix unknowns; bi-Hamiltonian formalism; Manakov model; ASSOCIATIVE ALGEBRAS;
D O I
10.1007/s11232-012-0043-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a special class of Poisson brackets related to systems of ordinary differential equations with matrix variables. We investigate general properties of such brackets, present an example of a compatible pair of quadratic and linear brackets, and find the corresponding hierarchy of integrable models, which generalizes the two-component Manakov matrix system to the case of an arbitrary number of matrices.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 12 条
[11]   COMPATIBLE POISSON STRUCTURES FOR LAX EQUATIONS - AN R-MATRIX APPROACH [J].
REYMAN, AG ;
SEMENOVTIANSHANSKY, MA .
PHYSICS LETTERS A, 1988, 130 (8-9) :456-460
[12]  
Schedler T, 2003, MATH RES LETT, V10, P301