Bi-Hamiltonian ordinary differential equations with matrix variables

被引:11
作者
Odesskii, A. V. [1 ]
Rubtsov, V. N. [2 ,3 ]
Sokolov, V. V. [4 ]
机构
[1] Brock Univ, St Catharines, ON L2S 3A1, Canada
[2] Univ Angers, CNRS, LAREMA, Angers, France
[3] Inst Theoret & Expt Phys, Moscow 117259, Russia
[4] RAS, LD Landau Theoret Phys Inst, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
integrable ordinary differential equation with matrix unknowns; bi-Hamiltonian formalism; Manakov model; ASSOCIATIVE ALGEBRAS;
D O I
10.1007/s11232-012-0043-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a special class of Poisson brackets related to systems of ordinary differential equations with matrix variables. We investigate general properties of such brackets, present an example of a compatible pair of quadratic and linear brackets, and find the corresponding hierarchy of integrable models, which generalizes the two-component Manakov matrix system to the case of an arbitrary number of matrices.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 12 条
[1]   On the associative analog of Lie bialgebras [J].
Aguiar, M .
JOURNAL OF ALGEBRA, 2001, 244 (02) :492-532
[2]  
ELASHVILI AG, 1982, FUNCT ANAL APPL+, V16, P326
[3]  
Gelfand IM., 2000, SELECTA MATH, V6, P131, DOI [10.1007/PL00001387, DOI 10.1007/PL00001387]
[4]  
Kontsevich M., 1993, GELFAND MATH SEMINAR, P173
[5]   SIMPLE-MODEL OF INTEGRABLE HAMILTONIAN EQUATION [J].
MAGRI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1156-1162
[6]  
Magri F., 1997, LECT NOTE PHYS, V495, P256
[7]  
Manakov SV., 1976, FUNCTIONAL ANAL APPL, V10, P328, DOI 10.1007/BF01076037
[8]   Integrable ODEs on associative algebras [J].
Mikhailov, AV ;
Sokolov, VV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :231-251
[9]   Integrable matrix equations related to pairs of compatible associative algebras [J].
Odesskii, A. V. ;
Sokolov, V. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40) :12447-12456
[10]   Double Poisson cohomology of path algebras of quivers [J].
Pichereau, Anne ;
Van de Weyer, Geert .
JOURNAL OF ALGEBRA, 2008, 319 (05) :2166-2208