A Low Power, High Throughput, Fully Event-Based Stereo System

被引:40
作者
Andreopoulos, Alexander [1 ]
Kashyap, Hirak J. [1 ,2 ]
Nayak, Tapan K. [1 ]
Amir, Arnon [1 ]
Flickner, Myron D. [1 ]
机构
[1] IBM Res, Zurich, Switzerland
[2] Univ Calif Irvine, CARL, IBM Res Al Maden, Irvine, CA USA
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
关键词
OBJECT RECOGNITION; RECONSTRUCTION; SENSOR;
D O I
10.1109/CVPR.2018.00786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a stereo correspondence system implemented fully on event-based digital hardware, using a fully graph-based non von-Neumann computation model, where no frames, arrays, or any other such data-structures are used. This is the first time that an end-to-end stereo pipeline from image acquisition and rectification, multi-scale spatio-temporal stereo correspondence, winner-take-all, to disparity regularization is implemented fully on event-based hardware. Using a cluster of TrueNorth neurosynaptic processors, we demonstrate their ability to process bilateral event-based inputs streamed live by Dynamic Vision Sensors (DVS), at up to 2,000 disparity maps per second, producing high fidelity disparities which are in turn used to reconstruct, at low power the depth of events produced from rapidly changing scenes. Experiments on real-world sequences demonstrate the ability of the system to take full advantage of the asynchronous and sparse nature of DVS sensors for low power depth reconstruction, in environments where conventionalframe-based cameras connected to synchronous processors would be inefficient for rapidly moving objects. System evaluation on event-based sequences demonstrates a similar to 200 x improvement in terms of power per pixel per disparity map compared to the closest state-of-the-art, and maximum latencies of up to lI ms from spike injection to disparity map ejection.
引用
收藏
页码:7532 / 7542
页数:11
相关论文
共 67 条
[1]  
Amir A., 2017, PROC CVPR IEEE, P7243, DOI DOI 10.1109/CVPR.2017.781
[2]  
Amir A, 2013, IEEE IJCNN
[3]   Visual saliency on networks of neurosynaptic cores [J].
Andreopoulos, A. ;
Taba, B. ;
Cassidy, A. S. ;
Alvarez-Icaza, R. ;
Flickner, M. D. ;
Risk, W. P. ;
Amir, A. ;
Merolla, P. A. ;
Arthur, J. V. ;
Berg, D. J. ;
Kusnitz, J. A. ;
Datta, P. ;
Esser, S. K. ;
Appuswamy, R. ;
Barch, D. R. ;
Modha, D. S. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2015, 59 (2-3)
[4]   50 Years of object recognition: Directions forward [J].
Andreopoulos, Alexander ;
Tsotsos, John K. .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (08) :827-891
[5]  
[Anonymous], 1989, COOPERATIVE STEREO M, DOI DOI 10.1007/978-1-4613-1639-89
[6]   The Fast Bilateral Solver [J].
Barron, Jonathan T. ;
Poole, Ben .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :617-632
[7]  
Beard R., 2005, AIAA Journal of Aerospace Computing, Information, and Communication, V2, P92
[8]   A Novel HDR Depth Camera for Real-time 3D 360° Panoramic Vision [J].
Belbachir, Ahmed Nabil ;
Schraml, Stephan ;
Mayerhofer, Manfred ;
Hofstaetter, Michael .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, :425-432
[9]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[10]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716