Counting algebraic points of bounded height on projective spaces

被引:5
作者
Guignard, Quentin
机构
关键词
Heights; Algebraic points; Height zeta functions;
D O I
10.1016/j.jnt.2016.06.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove new estimates on the number of algebraic points of fixed degree and bounded height on projective spaces over a given number field. These results extend previous works of Wolfgang Schmidt [13], Gao Xia [3] and Martin Widmer [18]. Our approach, based on zeta functions, also gives a new proof of Schanuel's theorem. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:103 / 141
页数:39
相关论文
共 18 条
[1]   ON SIEGEL LEMMA [J].
BOMBIERI, E ;
VAALER, J .
INVENTIONES MATHEMATICAE, 1983, 73 (01) :11-32
[2]  
DATSKOVSKY B, 1988, J REINE ANGEW MATH, V386, P116
[3]  
Gao X., 1985, THESIS
[4]   Slopes of adelic vectorial bundles over global fields [J].
Gaudron, Eric .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2008, 119 :21-95
[5]  
Grayson D., 1984, COMMENT MATH HELV, P59
[6]  
Groenewegen R.P., 2001, J THEOR NOMBRES BORD, V13
[7]  
LANG S, 1970, ALGEBRAIC NUMBER THE
[8]  
Le Rudulier C., 2014, J THEOR NOMBRES BORD, V26
[9]   Counting algebraic numbers with large height II [J].
Masser, David ;
Vaaler, Jeffrey D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :427-445
[10]   ORDERS OF QUADRATIC EXTENSIONS OF NUMBER-FIELDS [J].
NAKAGAWA, J .
ACTA ARITHMETICA, 1994, 67 (03) :229-239