Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode

被引:179
作者
Wu, Feng [1 ,2 ]
Chen, Junzheng [1 ]
Li, Li [1 ,2 ]
Zhao, Teng [1 ]
Chen, Renjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
[2] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China
关键词
RECHARGEABLE LITHIUM BATTERIES; MULTIWALLED CARBON NANOTUBES; ELECTROCHEMICAL PROPERTIES; SULFUR CATHODE; COMPOSITE CATHODE; RATE CAPABILITY; GELATIN BINDER; DIMETHYLFORMAMIDE; SUPERCAPACITOR; POLYSULFIDES;
D O I
10.1021/jp207893d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rapid in situ chemical oxidation polymerization of polyaniline was carried out to coat MWCNT-core/sulfur-shell structures. The S-coated-MWCNTs were obtained by ball-milling and thermal treatment. The polymerization was carried out by adding 2.6 g of dispersed S/MWCNT and 0.65 g of aniline hydrochloride to ethanol, and then mixing in a certain amount of ammonium peroxydisulfate dissolved in 0.2 M HCl. The addition of S/MWCNT reduced the polymerization time from 60 to 21 min. The composites were characterized by elemental analysis, FTIR, XRD, SEM, TEM, and electrochemical methods. A 70.0% sulfur, 20.2% emeraldine PANi salt and 9.8% MWCNT composite gave the typical two reduction peaks and two oxidation peaks; these are due to three polysulfide species. The initial discharge capacity was 1334.4 mAh g(-1)-S for the PANi-S/MWCNT electrode and the remaining capacity was 932.4 mAh g(-1)-S after 80 cycles. The columbic efficiency doubled to 92.4% compared to S-MWCNT-2. The rate of the reaction upon using PANi-S/MWCNT electrode was found to be almost twice that of the S/MWCNT composites. Because of the porous polymer, the diffusion distance of the lithium ion from the bulk liquid was reduced. The gel-like cathode composites and the higher conductivities improved the kinetics of the lithium sulfur redox reaction.
引用
收藏
页码:24411 / 24417
页数:7
相关论文
共 40 条
[1]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[2]   Rechargeable lithium sulfur battery - II. Rate capability and cycle characteristics [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A800-A805
[3]   Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell [J].
Choi, Young-Jin ;
Chung, Young-Dong ;
Baek, Chang-Yong ;
Kim, Ki-Won ;
Ahn, Hyo-Jun ;
Ahn, Jou-Hyeon .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :548-552
[4]  
Dong QF, 2011, PROG CHEM, V23, P533
[5]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[6]   Polysulfides in dimethylformamide: Only the radical anions S-3(-) and S-4(-) are reducible [J].
Gaillard, F ;
Levillain, E ;
Lelieur, JP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 432 (1-2) :129-138
[7]   Effect of multiwalled carbon nanotubes on electrochemical properties of lithium sulfur rechargeable batteries [J].
Han, SC ;
Song, MS ;
Lee, H ;
Kim, HS ;
Ahn, HJ ;
Lee, JY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) :A889-A893
[8]   Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder [J].
He, Min ;
Yuan, Li-Xia ;
Zhang, Wu-Xing ;
Hu, Xian-Luo ;
Huang, Yun-Hui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31) :15703-15709
[9]   High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers [J].
Huang, Yun-Hui ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2008, 20 (23) :7237-7241
[10]   Advances in Li-S batteries [J].
Ji, Xiulei ;
Nazar, Linda F. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (44) :9821-9826