A conductive ZnO:Ga/ZnO core-shell nanorod photoanode for photoelectrochemical water splitting

被引:26
|
作者
Xiao, Jingran [1 ]
Hou, Xuelan [1 ]
Zhao, Le [1 ]
Li, Yongdan [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin Key Lab Appl Catalysis Sci & Technol, State Key Lab Chem Engn,Sch Chem Engn, Tianjin 300072, Peoples R China
关键词
ZnO nanorod; Ga doping; Core-shell; Isostructural nanojunction; Photoelectrochemical water splitting; ZNO NANOWIRE ARRAYS; PERFORMANCE ENHANCEMENT; EFFICIENT; HETEROJUNCTION; ELECTRODE; GROWTH; OXIDE; TIO2; CDS;
D O I
10.1016/j.ijhydene.2016.06.151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a ZnO:Ga/ZnO isostructural nanojunction photoanode with core-shell structure for photoelectrochemical water splitting. Ga-doped zinc oxide (ZnO:Ga) shell is grown in situ on the vertically aligned ZnO array core in a hydrothermal process. The as-prepared ZnO:Ga/ZnO composite with nearly the same lattice structure in the two phases exhibits enhanced light absorption and improved electrical conductivity. The photocurrent density of the composite achieves 0.6 mA cm(-2) under AM 1.5G simulated light irradiation with an applied bias of 1.23 vs. Ag/AgCl, which is three times higher than that of the anode made of pristine ZnO array. Under visible light (lambda > 420 nm) irradiation, the current density reaches 0.06 mA cm(-2) at the same condition. Moreover, the ZnO:Ga/ZnO composite shows better photostability than ZnO both in neutral and alkaline electrolyte. The isostructural nano junction with excellent lattice match is thus demonstrated to be a promising material as the photoanode in water splitting. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14596 / 14604
页数:9
相关论文
共 50 条
  • [1] ZnO-TiO2 Core-Shell Nanowires: A Sustainable Photoanode for Enhanced Photoelectrochemical Water Splitting
    Jeong, Kyuwon
    Deshmukh, Prashant R.
    Park, Jinse
    Sohn, Youngku
    Shin, Weon Gyu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (05): : 6518 - 6526
  • [2] Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting
    Miao, Jianwei
    Yang, Hong Bin
    Khoo, Si Yun
    Liu, Bin
    NANOSCALE, 2013, 5 (22) : 11118 - 11124
  • [3] Si/ZnO core-shell nanowire arrays for photoelectrochemical water splitting
    Shi, Minmin
    Pan, Xiaowei
    Qiu, Weiming
    Zheng, Dingxiang
    Xu, Mingsheng
    Chen, Hongzheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (23) : 15153 - 15159
  • [4] CNT-ZnO Core-Shell Photoanodes for Photoelectrochemical Water Splitting
    Prasadam, Vasu Prasad
    Huerta Flores, Ali Margot
    Audinot, Jean-Nicolas
    Bahlawane, Naoufal
    COATINGS, 2022, 12 (01)
  • [5] Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting
    Zhang, Chenglong
    Shao, Mingfei
    Ning, Fanyu
    Xu, Simin
    Li, Zhenhua
    Wei, Min
    Evans, David G.
    Duan, Xue
    NANO ENERGY, 2015, 12 : 231 - 239
  • [6] Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting
    Guo, Chun Xian
    Xie, Jiale
    Yang, Hongbin
    Li, Chang Ming
    ADVANCED SCIENCE, 2015, 2 (12):
  • [7] Photoelectrochemical performance of hydrogenated ZnO/CdS core-shell nanorod arrays
    Li, Hui
    Yao, Chenzhong
    Meng, Lixin
    Sun, Hong
    Huang, Jian
    Gong, Qiaojuan
    ELECTROCHIMICA ACTA, 2013, 108 : 45 - 50
  • [8] Core-Shell ZnO Nanorod Lasers
    Visimberga, G.
    Faulkner, C. C.
    Boese, M.
    O'Dwyer, C.
    WIDE-BANDGAP SEMICONDUCTOR MATERIALS AND DEVICES 13, 2012, 45 (07): : 51 - 59
  • [9] An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting
    Wang, Bao-Shun
    Li, Ren-Ying
    Zhang, Zhi-Yun
    Xing-Wang
    Wu, Xiao-Ling
    Cheng, Guo-An
    Zheng, Rui-Ting
    CATALYSIS TODAY, 2019, 321 : 100 - 106
  • [10] ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation
    Park, Jong-Hyun
    Kim, Hyojin
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (05): : 239 - 245