Effect of Focused Ion Beam Irradiation on Superconducting Nanowires

被引:3
作者
Shani, Lior [1 ,2 ]
Fried, Avital [1 ,2 ]
Fleger, Yafit [2 ]
Girshevitz, Olga [2 ]
Sharoni, Amos [1 ,2 ]
Yeshurun, Yosef [1 ,2 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Inst Nanotechnol & Adv Mat BINA, IL-5290002 Ramat Gan, Israel
关键词
Focused Ion Beam (FIB); Superconductors; Nanowires; Stopping and Range of Ions in Matter (SRIM) simulations;
D O I
10.1007/s10948-021-06098-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent advances in focused ion beam (FIB) technology exploit accelerated helium or neon ions, rather than gallium, for maskless fabrication of superconducting nanocomponents. We present a study of the effect of the damage induced by the accelerated ions on the superconducting transition temperature, T-c, of a patterned similar to 85-nm-wide Nb wire, demonstrating a decrease of T-c from similar to 5.5 K in the wire patterned by He ions to similar to 2.8 and 2.3 K exploiting Ne and Ga ions, respectively. In an effort to gain insight into the origin of these changes in T-c, we performed Stopping and Range of Ions in Matter (SRIM) simulations to estimate the damage induced by each type of ion. The simulations show that the lateral distribution of the ion beam and the sputtering rate in using Ne or Ga are significantly larger than those caused by He, consistent with the changes in the measured electrical properties of the nanowire.
引用
收藏
页码:657 / 661
页数:5
相关论文
共 22 条
[1]   Reset dynamics and latching in niobium superconducting nanowire single-photon detectors [J].
Annunziata, Anthony J. ;
Quaranta, Orlando ;
Santavicca, Daniel F. ;
Casaburi, Alessandro ;
Frunzio, Luigi ;
Ejrnaes, Mikkel ;
Rooks, Michael J. ;
Cristiano, Roberto ;
Pagano, Sergio ;
Frydman, Aviad ;
Prober, Daniel E. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
[2]   Superconductivity in one dimension [J].
Arutyunov, K. Yu. ;
Golubev, D. S. ;
Zaikin, A. D. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 464 (1-2) :1-70
[3]  
Berggren K.K, 2020, ARXIV PREPRINT ARXIV
[4]   Quantum suppression of superconductivity in ultrathin nanowires [J].
Bezryadin, A ;
Lau, CN ;
Tinkham, M .
NATURE, 2000, 404 (6781) :971-974
[5]   Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam [J].
Burnett, J. ;
Sagar, J. ;
Kennedy, O. W. ;
Warburton, P. A. ;
Fenton, J. C. .
PHYSICAL REVIEW APPLIED, 2017, 8 (01)
[6]   Nanofabrication by electron beam lithography and its applications: A review [J].
Chen, Yifang .
MICROELECTRONIC ENGINEERING, 2015, 135 :57-72
[7]  
Cybart SA, 2015, NAT NANOTECHNOL, V10, P598, DOI [10.1038/NNANO.2015.76, 10.1038/nnano.2015.76]
[8]   Superconducting Nanowires for Single-Photon Detection: Progress, Challenges, and Opportunities [J].
Holzman, Itamar ;
Ivry, Yachin .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (3-4)
[9]   Quantum interference device made by DNA templating of superconducting nanowires [J].
Hopkins, DS ;
Pekker, D ;
Goldbart, PM ;
Bezryadin, A .
SCIENCE, 2005, 308 (5729) :1762-1765
[10]   Direct-Write Ion Beam Lithography [J].
Joshi-Imre, Alexandra ;
Bauerdick, Sven .
JOURNAL OF NANOTECHNOLOGY, 2014, 2014