fMRI priors for the linear inverse estimation of EEG cortical sources

被引:6
|
作者
Cincotti, F
Babiloni, C
Carducci, F
Rossini, PM
Del Gratta, C
Romani, GL
Angelone, L
Babiloni, F
机构
[1] Univ Roma La Sapienza, Dipartimento Fisiol Umana & Farmacol, I-00185 Rome, Italy
[2] IRCCS, Fdn Santa Lucia, Rome, Italy
[3] AFaR, Rome, Italy
[4] CRCCS Osped Fatebenefratelli, Rome, Italy
[5] Ist Sacro Cuore Gesu, IRCCS San Giovanni di Dio, Brescia, Italy
[6] Univ G DAnnunzio, Dipartimento Sci Clin & Bioimmagini, Chieti, Italy
[7] Univ G DAnnunzio, Ist Tecnol Biomed Avanzate, Chieti, Italy
[8] UdR Aquila, Ist Nazl Fis Mat, Laquila, Italy
关键词
linear inverse source estimate; event-related fMRI; EEG-fMRI integration; movement-related potentials;
D O I
10.1080/027263401752246216
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, advanced methods for the modeling of human cortical activity from combined high-resolution electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data are reviewed. These methods include a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from magnetic resonance images, multidipole source model, and regularized linear inverse source estimate based on boundary element mathematics. Furthermore, determination of the priors in the resolution of the linear inverse problem was performed with the use of information from the hemodynamic responses of the cortical areas as revealed by block-designed (strength of activated voxels) and event-related (coupling of activated voxels) fMRI. Linear inverse source estimates of cortical activity were regularized by taking into account the covariance of background EEG sensor noise. As an example, these methods were applied to EEG (128 electrodes) and fMRI data, which were recorded in separate sessions while normal subjects executed voluntary right one-digit movements.
引用
收藏
页码:579 / 592
页数:14
相关论文
共 5 条
  • [1] Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function
    Babiloni, F
    Cincotti, F
    Babiloni, C
    Carducci, F
    Mattia, D
    Astolfi, L
    Basilisco, A
    Rossini, PM
    Ding, L
    Ni, Y
    Cheng, J
    Christine, K
    Sweeney, J
    He, B
    NEUROIMAGE, 2005, 24 (01) : 118 - 131
  • [2] Estimation of the cortical connectivity during a finger-tapping movement with multimodal integration of EEG and fMRI recordings
    Babiloni, F
    Babiloni, C
    Carducci, F
    Rossini, PM
    Basilisco, A
    Astolfi, L
    Cincotti, F
    Ding, L
    Ni, Y
    Cheng, J
    Christine, K
    Sweeney, J
    He, B
    FRONTIERS IN HUMAN BRAIN TOPOGRAPHY, 2004, 1270 : 126 - 129
  • [3] Linear inverse source estimate of combined EEG and MEG data related to voluntary movements
    Babiloni, F
    Carducci, F
    Cincotti, F
    Del Gratta, C
    Pizzella, V
    Romani, GL
    Rossini, PM
    Tecchio, F
    Babiloni, C
    HUMAN BRAIN MAPPING, 2001, 14 (04) : 197 - 209
  • [4] Cortical source estimate of combined high resolution EEG and fMRI data related to voluntary movements
    Babiloni, F
    Babiloni, C
    Carducci, F
    Del Gratta, C
    Romani, GL
    Rossini, PM
    Cincotti, F
    METHODS OF INFORMATION IN MEDICINE, 2002, 41 (05) : 443 - 450
  • [5] Simultaneous EEG and fMRI Reveals a Causally Connected Subcortical-Cortical Network during Reward Anticipation
    Plichta, Michael M.
    Wolf, Isabella
    Hohmann, Sarah
    Baumeister, Sarah
    Boecker, Regina
    Schwarz, Adam J.
    Zangl, Maria
    Mier, Daniela
    Diener, Carsten
    Meyer, Patric
    Holz, Nathalie
    Ruf, Matthias
    Gerchen, Martin F.
    Bernal-Casas, David
    Kolev, Vasil
    Yordanova, Juliana
    Flor, Herta
    Laucht, Manfred
    Banaschewski, Tobias
    Kirsch, Peter
    Meyer-Lindenberg, Andreas
    Brandeis, Daniel
    JOURNAL OF NEUROSCIENCE, 2013, 33 (36) : 14526 - 14533