The results of synchrotron X-ray diffraction measurements on a single crystal of the triangular lattice antiferromagnet CuFeO2 under zero and non-zero applied magnetic fields are reported. We find four satellite reflections at (0, 3+q, 1/2), (0,4 -q, 1/2), (0,4 -2q, 0), and (0, 3+2q, 0) with the incommensurate wave number q similar to 0.415 in the ferroelectric incommensurate (FEIC) phase which appears in the magnetic field, H, between 7 and 13 T at low temperatures. In the partially disordered (PD) phase which exists in the temperature, T, range between 11 and 14 K, we find two satellite reflections at (0, 4-q, 1/2) and (0, 4-2q, 0) with the incommensurate wave number q similar to 0.4. The T and H dependence of these satellite reflections are studied. We interpret that the reflections observed in the FEIC phase arise from incommensurate lattice modulations caused by a magnetoelastic coupling with the underlying magnetic structure. The observation of the reflection (0, 4-q, 1/2) in finite fields and the (0, 4-2q, 0) reflection at 0 <= H in the PD phase is also explained by the same model. A calculation of the X-ray diffraction intensity assuming the displacement of oxygen ions only successfully explains the observation. We discuss the relevance of these satellite reflections to the ferroelectricity.