Local convergence analysis of two iterative methods

被引:1
作者
George, Santhosh [1 ]
Argyros, Ioannis K. [2 ]
Senapati, Kedarnath [1 ]
Kanagaraj, K. [3 ]
机构
[1] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangaluru 575025, India
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] SASTRA Deemed Be Univ, Srinivasa Ramanujan Ctr, Dept Math, Kumbakonam 612001, India
关键词
Frechet derivative; Order of convergence; Dynamics of iterative method; Iterative method; Banach space; SEMILOCAL CONVERGENCE; RECURRENCE RELATIONS; 5TH-ORDER METHOD; ORDER;
D O I
10.1007/s41478-022-00415-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider two three-step iterative methods with common first two steps. The convergence order five and six, respectively of these methods are proved using assumptions on the first derivative of the operator involved. We also provide dynamics of these methods
引用
收藏
页码:1497 / 1508
页数:12
相关论文
共 23 条
[1]   A modified Chebyshev's iterative method with at least sixth order of convergence [J].
Amat, S. ;
Hernandez, M. A. ;
Romero, N. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) :164-174
[2]  
[Anonymous], 1970, ITERATIVE SOLUTION N
[3]  
[Anonymous], 1977, SOLUTION EQUATIONS E
[4]  
Argyros I.K., 2017, Iterative Methods and their Dynamics with Applications
[5]  
Argyros IK., 2018, APPL MATH-US, V45, P223
[6]  
Argyros IK., 2020, MATH MODELING SOLUTI, DOI 10.52305/EQOT3361
[7]   A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative [J].
Argyros, Ioannis K. ;
Alberto Magrenan, A. .
NUMERICAL ALGORITHMS, 2016, 71 (01) :1-23
[8]   Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order [J].
Argyros, Ioannis K. ;
George, Santhosh ;
Alberto Magrenan, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 :215-224
[9]   Facile Synthesis of Monodisperse ZnO Nanocrystals by Direct Liquid Phase Precipitation [J].
Chen, Lan ;
Holmes, Justin D. ;
Ramirez-Garcia, Sonia ;
Morris, Andmichael A. .
JOURNAL OF NANOMATERIALS, 2011, 2011
[10]   Third-order family of methods in Banach spaces [J].
Chun, Changbum ;
Stanica, Pantelimon ;
Neta, Beny .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (06) :1665-1675