Complete convergence of stochastic approximation algorithm in Rd under random noises

被引:2
作者
Arab, Idir [1 ]
Dahmani, Abdelnasser [2 ]
机构
[1] Univ A MIRA Bejaia, Fac Sci Exactes, Lab Math Appl, Bejaia 06000, Algeria
[2] Ctr Univ Tamanrasset, Tamanrasset, Algeria
来源
SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS | 2016年 / 35卷 / 02期
关键词
Bernstein inequalities; dependent noise; exponential bounds; independent noise; quasi-associated random variables; root of a function; stochastic approximation; RANDOM-VARIABLES; ROBBINS-MONRO; INEQUALITIES;
D O I
10.1080/07474946.2016.1165537
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study a stochastic approximation algorithm that approximates the exact root theta of a function M defined in R-d into R-d. The function M cannot be known exactly, but only noisy measurements are available at each point x(n) with the error xi(n). The sequence of noise (xi(n))(n) is random; we treat both cases where it is independent and dependent and we establish the complete convergence of the approximated sequence of theta.
引用
收藏
页码:216 / 225
页数:10
相关论文
共 29 条
[1]  
Barlow R. E., 1965, Statistical Theory of Reliability and Life Testing
[2]  
Bondarev B. V., 1989, UKR MATH J, V41, P741
[3]   Normal approximation for quasi-associated random fields [J].
Bulinski, A ;
Suquet, C .
STATISTICS & PROBABILITY LETTERS, 2001, 54 (02) :215-226
[4]  
Chen H. F., 2002, STOCHASTIC APPROXIMA
[5]   ON A STOCHASTIC APPROXIMATION METHOD [J].
CHUNG, KL .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (03) :463-483
[6]  
Dedecker J, 2007, Weak Dependence: With Examples and Applications, P9
[7]  
DEVROYE L, 1991, NATO ADV SCI I C-MAT, V335, P31
[8]   ASSOCIATION OF RANDOM VARIABLES WITH APPLICATIONS [J].
ESARY, JD ;
PROSCHAN, F ;
WALKUP, DW .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (05) :1466-&
[9]   ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION [J].
FABIAN, V .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04) :1327-&
[10]   CORRELATION INEQUALITIES ON SOME PARTIALLY ORDERED SETS [J].
FORTUIN, CM ;
KASTELEY.PW ;
GINIBRE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (02) :89-&