First insight on Mo(II) as electrocatalytically active species for oxygen evolution reaction

被引:37
作者
Liu, Zailun [1 ]
Yuan, Chen [1 ]
Teng, Fei [1 ]
Tang, Maoyuan [1 ]
Ul Abideen, Zain [1 ]
Teng, Yiran [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Engn & Technol Res Ctr Environm Cleaning, CICAEET,Jiangsu Key Lab Atmospher Environm Monito, Sch Environm Sci & Engn,Jiangsu Joint Lab Atmosph, 219 Ningliu Rd, Nanjing 210044, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Alloy; Mo(II) species; MoxC; Oxygen evolution reaction; Electrocatalyst; WATER-OXIDATION; MOLYBDENUM CARBIDE; ULTRATHIN NANOSHEETS; HIGHLY EFFICIENT; HYDROGEN; CARBON; CATALYST; MANGANESE; LAYER; GROWTH;
D O I
10.1016/j.ijhydene.2018.11.105
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The replacement of noble metals with earth-abundant metals is still a big challenge for the practical application of electrocatalysis. In this work, we have developed the MoxC-modified alloy@nitrogen-doped carbon hybrid electrocatalysts (MoxC-alloy@NC, alloy: FeCo, NiCo) for oxygen evolution reaction (OER) by a simple thermolysis method. Compared with FeCo@NC and NiCo@NC, the OER performances of MoxC-FeCo@NC and MoC-NiCo@NC are greatly enhanced, mainly due to the improved electrical conductivity by the introduce of MoxC. Moreover, MoxC-FeCo@NC exhibits a smaller Tafel slope (80 mV/dec) and a lower overpotential (318 mV) at 10 mA cm(-2) in 1 M KOH solution, compared with MoC-NiCo@NC (186 mV/dec, 352 mV). In consideration of a lower BET area (6.6 m(2) g(-1)) of MoxC-FeCo@NC than those of MoC-NiCo@NC (25.4 m(2) g(-2)), the remarkable electrocatalytic activity of MoxC-FeCo@NC is mainly attributed to the presence of Mo(II) acting as the OER active species. Although Mo as hydrogen evolution reaction (HER) active species is well known, Mo(II) as the OER active species has not been reported before. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1345 / 1351
页数:7
相关论文
共 60 条
[1]  
[Anonymous], 2015, ANGEW CHEM-GER EDIT
[2]   Seamlessly Conductive 3D Nanoarchitecture of Core-Shell Ni-Co Nanowire Network for Highly Efficient Oxygen Evolution [J].
Bae, Seok-Hu ;
Kim, Ji-Eun ;
Randriamahazaka, Hyacinthe ;
Moon, Song-Yi ;
Park, Jeong-Young ;
Oh, Il-Kwon .
ADVANCED ENERGY MATERIALS, 2017, 7 (01)
[3]   Mo2C@NC nanowire bundle for efficient electrocatalytic hydrogen evolution [J].
Chakrabartty, Sukanta ;
Raj, C. Retna .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (42) :19510-19520
[4]   Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production [J].
Chen, W. -F. ;
Wang, C. -H. ;
Sasaki, K. ;
Marinkovic, N. ;
Xu, W. ;
Muckerman, J. T. ;
Zhu, Y. ;
Adzic, R. R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :943-951
[5]   Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation [J].
Cui, Xiaoju ;
Ren, Pengju ;
Deng, Dehui ;
Deng, Jiao ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :123-129
[6]   Hexagonal-Phase Cobalt Monophosphosulfide for Highly Efficient Overall Water Splitting [J].
Dai, Zhengfei ;
Geng, Hongbo ;
Wang, Jiong ;
Luo, Yubo ;
Li, Bing ;
Zong, Yun ;
Yang, Jun ;
Guo, Yuanyuan ;
Zheng, Yun ;
Wang, Xin ;
Yan, Qingyu .
ACS NANO, 2017, 11 (11) :11031-11040
[7]   In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER [J].
Das, Debanjan ;
Santra, Saswati ;
Nanda, Karuna Kar .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) :35025-35038
[8]   Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (07) :2100-2104
[9]   Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries [J].
Dong, Shanmu ;
Chen, Xiao ;
Zhang, Kejun ;
Gu, Lin ;
Zhang, Lixue ;
Zhou, Xinhong ;
Li, Lanfeng ;
Liu, Zhihong ;
Han, Pengxian ;
Xu, Hongxia ;
Yao, Jianhua ;
Zhang, Chuanjian ;
Zhang, Xiaoying ;
Shang, Chaoqun ;
Cui, Guanglei ;
Chen, Liquan .
CHEMICAL COMMUNICATIONS, 2011, 47 (40) :11291-11293
[10]   N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction [J].
Feng, Yi ;
Yu, Xin-Yao ;
Paik, Ungyu .
SCIENTIFIC REPORTS, 2016, 6