Design, Fabrication and Analysis of Silicon Microneedles for Transdermal Drug Delivery Applications

被引:0
作者
Bodhale, D. W. [1 ]
Nisar, A. [1 ]
Afzulpurkar, N. [1 ]
机构
[1] Asian Inst Technol, Sch Engn & Technol, Bangkok 10501, Thailand
来源
THIRD INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM | 2010年 / 27卷
关键词
Computational fluid dynamic (CFD) analysis; Deep reactive ion etching (DRIE); Drug delivery; Hollow silicon microneedle; Transdermal drug delivery (TDD);
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the major drawbacks of transdermal drug delivery (TDD) systems has been their inability to deliver the drugs through the skin at therapeutically desirable range. To overcome this limitation, use of microneedles is gaining popularity. In this paper, the use of microneedles has been proposed for the transdermal drug delivery applications. By using the processes developed by microelectronics industry, the hollow cylindrical silicon microneedles array has been fabricated with microneedles having the tapered tip for easy skin insertion. Mask layout design and fabrication steps involving deep reactive ion etching (DRIE) using silicon wafers is first presented. The process is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. The performance of the microneedles is numerically characterized by using structural and coupled multifield analysis. To predict the stress distribution and model fluid flow in coupled multifield analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS has been used. Flow rate through the microneedles is investigated at different voltages and frequencies using multiple codes coupling method. The analysis of the flow behavior by coupled field method and structural characteristics provides useful data to fabricate optimized design of the hollow silicon microneedle based drug delivery device for transdermal drug delivery applications.
引用
收藏
页码:84 / 89
页数:6
相关论文
共 22 条
[1]   Geometrical effects in mechanical characterizing of microneedle for biomedical applications [J].
Aggarwal, P ;
Johnston, CR .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 102 (02) :226-234
[2]  
Aoyagi S, 2007, SENSOR ACTUAT A-PHYS, V143, P20
[3]   Novel mechanisms and devices to enable successful transdermal drug delivery [J].
Barry, BW .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2001, 14 (02) :101-114
[4]  
Batchelor GK, 1967, An introduction to fluid dynamics
[5]   A SILICON-BASED, 3-DIMENSIONAL NEURAL INTERFACE - MANUFACTURING PROCESSES FOR AN INTRACORTICAL ELECTRODE ARRAY [J].
CAMPBELL, PK ;
JONES, KE ;
HUBER, RJ ;
HORCH, KW ;
NORMANN, RA .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1991, 38 (08) :758-768
[6]   Simulation of a piezoelectrically actuated valveless micropump [J].
Fan, B ;
Song, G ;
Hussain, F .
SMART MATERIALS AND STRUCTURES, 2005, 14 (02) :400-405
[7]  
Gardeniers HJGE, 2003, J MICROELECTRO 998 M, V12
[8]   Micromachined needles for the transdermal delivery of drugs [J].
Henry, S ;
McAllister, DV ;
Allen, MG ;
Prausnitz, MR .
MICRO ELECTRO MECHANICAL SYSTEMS - IEEE ELEVENTH ANNUAL INTERNATIONAL WORKSHOP PROCEEDINGS, 1998, :494-498
[9]  
Janna W., 1998, Design of Fluid Thermal Systems, V2nd
[10]  
Kim, 2004, J MICROMECH MICROENG, V14, P597