共 49 条
Alleviating Bone Cancer-induced Mechanical Hypersensitivity by Inhibiting Neuronal Activity in the Anterior Cingulate Cortex
被引:33
作者:
Chiou, Chiuan-Shiou
[1
,2
]
Chen, Chien-Chung
[1
]
Tsai, Tsung-Chih
[1
]
Huang, Chiung-Chun
[1
]
Chou, Dylan
[1
]
Hsu, Kuei-Sen
[1
]
机构:
[1] Natl Cheng Kung Univ, Coll Med, Dept Pharmacol, 1 Univ Rd, Tainan 701, Taiwan
[2] China Med Univ, China Med Univ Hosp, Dept Anesthesiol, Taichung, Taiwan
关键词:
NEUROPATHIC PAIN;
PERIAQUEDUCTAL GRAY;
PREFRONTAL CORTEX;
NERVE INJURY;
BEHAVIOR;
RAT;
CINGULOTOMY;
RECEPTORS;
POTENTIATION;
STIMULATION;
D O I:
10.1097/ALN.0000000000001237
中图分类号:
R614 [麻醉学];
学科分类号:
100217 ;
摘要:
Background: The anterior cingulate cortex (ACC) is a brain region that has been critically implicated in the processing of pain perception and modulation. While much evidence has pointed to an increased activity of the ACC under chronic pain states, less is known about whether pain can be alleviated by inhibiting ACC neuronal activity. Methods: The authors used pharmacologic, chemogenetic, and optogenetic approaches in concert with viral tracing technique to address this issue in a mouse model of bone cancer-induced mechanical hypersensitivity by intratibia implantation of osteolytic fibrosarcoma cells. Results: Bilateral intra-ACC microinjections of.-aminobutyric acid receptor type A receptor agonist muscimol decreased mechanical hypersensitivity in tumor-bearing mice (n = 10). Using adenoviral-mediated expression of engineered G(i/o)-coupled human M4 (hM4Di) receptors, we observed that activation of G(i/o)-coupled human M4 receptors with clozapine-N-oxide reduced ACC neuronal activity and mechanical hypersensitivity in tumor-bearing mice (n = 11). In addition, unilateral optogenetic silencing of ACC excitatory neurons with halorhodopsin significantly decreased mechanical hypersensitivity in tumor-bearing mice (n = 4 to 9), and conversely, optogenetic activation of these neurons with channelrhodopsin-2 was sufficient to provoke mechanical hypersensitivity in sham-operated mice (n = 5 to 9). Furthermore, we found that excitatory neurons in the ACC send direct descending projections to the contralateral dorsal horn of the lumbar spinal cord via the dorsal corticospinal tract. Conclusions: The findings of this study indicate that enhanced neuronal activity in the ACC contributes to maintain bone cancer-induced mechanical hypersensitivity and suggest that the ACC may serve as a potential therapeutic target for treating bone cancer pain.
引用
收藏
页码:779 / 792
页数:14
相关论文