An orthogonal projection related to the Riemann zeta-function

被引:0
|
作者
Li, Xian-Jin [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Bounded linear functional; Location of zeta zeros; Orthogonal projection; SPHEROIDAL WAVE-FUNCTIONS;
D O I
10.1016/j.jmaa.2016.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a global orthogonal projection is found for which an explicit formula is given. Under the assumption of a density result, this projection denies the existence of zeros of the Riemann zeta-function on the right side of the critical line, but not zeros on the left side. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1310 / 1327
页数:18
相关论文
共 50 条
  • [1] Orthogonal Projection Analysis
    Lin, Binbin
    Zhang, Chiyuan
    He, Xiaofei
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 1 - 8
  • [2] Orthogonal projection regularization operators
    Morigi, S.
    Reichel, L.
    Sgallari, F.
    NUMERICAL ALGORITHMS, 2007, 44 (02) : 99 - 114
  • [3] Orthogonal Projection in Linear Bandits
    Kang, Qiyu
    Tay, Wee Peng
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [4] Orthogonal projection regularization operators
    S. Morigi
    L. Reichel
    F. Sgallari
    Numerical Algorithms, 2007, 44 : 99 - 114
  • [5] Signal Power Estimation Based on Orthogonal Projection and Oblique Projection
    Suga, Norisato
    Furukawa, Toshihiro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (12): : 2571 - 2575
  • [6] The Orthogonal Projection and the Riesz Representation Theorem
    Narita, Keiko
    Endou, Noboru
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2015, 23 (03): : 243 - 252
  • [7] Fast Orthogonal Projection for Hyperspectral Unmixing
    Tao, Xuanwen
    Paoletti, Mercedes E.
    Han, Lirong
    Haut, Juan M.
    Ren, Peng
    Plaza, Javier
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] New bounds for perturbation of the orthogonal projection
    Li, Bingxiang
    Li, Wen
    Cui, Lubin
    CALCOLO, 2013, 50 (01) : 69 - 78
  • [9] New bounds for perturbation of the orthogonal projection
    Bingxiang Li
    Wen Li
    Lubin Cui
    Calcolo, 2013, 50 : 69 - 78
  • [10] Orthogonal projection on the graph of a closed linear relation
    Mezroui, Y
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2789 - 2800