Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity

被引:25
作者
Sakaguchi, H [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
关键词
dissipative soliton; vortex; complex Ginzburg-Landau equation;
D O I
10.1016/j.physd.2005.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motions of pulses and vortices are numerically studied with the cubic-quintic complex Ginzburg-Landau equation without viscous terms. There exist moving pulses and vortices with any velocities, because the equation is invariant for the Galilei transformation. We study mutual collisions of counter-propagating pulses and vortices, and motions of pulses and vortices in external potentials. Moving pulses and vortices pass through a potential wall like a tunnel effect. If some viscous terms are included, the model equation is equivalent to the quintic complex Swift-Hohenberg equation. We find a supercritical bifurcation from a stationary pulse to a moving pulse. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 148
页数:11
相关论文
共 17 条
[1]   OPTICAL PULSE-PROPAGATION IN DOPED FIBER AMPLIFIERS [J].
AGRAWAL, GP .
PHYSICAL REVIEW A, 1991, 44 (11) :7493-7501
[2]  
[Anonymous], J PHYS
[3]   Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability [J].
Baizakov, BB ;
Konotop, VV ;
Salerno, M .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (24) :5105-5119
[4]   INTERACTION OF LOCALIZED SOLUTIONS FOR SUBCRITICAL BIFURCATIONS [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICAL REVIEW LETTERS, 1989, 63 (26) :2801-2804
[5]   Stable vortex solitons in the two-dimensional Ginzburg-Landau equation [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PHYSICAL REVIEW E, 2001, 63 (01)
[6]   Formation of a matter-wave bright soliton [J].
Khaykovich, L ;
Schreck, F ;
Ferrari, G ;
Bourdel, T ;
Cubizolles, J ;
Carr, LD ;
Castin, Y ;
Salomon, C .
SCIENCE, 2002, 296 (5571) :1290-1293
[7]  
Kivshar Y.S., 2003, OPTICAL SOLITONS
[8]   DRIFT, SHAPE, AND INTRINSIC DESTABILIZATION OF PULSES OF TRAVELING-WAVE CONVECTION [J].
KOLODNER, P .
PHYSICAL REVIEW A, 1991, 44 (10) :6448-6465
[9]  
Kuramoto Y, 2003, CHEM OSCILLATIONS WA
[10]   EVOLUTION OF NONSOLITON AND QUASI-CLASSICAL WAVETRAINS IN NONLINEAR SCHRODINGER AND KORTEWEG-DEVRIES EQUATIONS WITH DISSIPATIVE PERTURBATIONS [J].
MALOMED, BA .
PHYSICA D, 1987, 29 (1-2) :155-172