Numerical simulation of a stroke: Computational problems and methodology

被引:7
作者
Descombes, Stephane [2 ]
Dumont, Thierry [1 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR 5208, F-69200 Villeurbanne, France
[2] Ecole Normale Super Lyon, CNRS, Unite Math Pures & Appl, UMR 5669, F-69364 Lyon 07, France
关键词
partial differential equations; numerical methods; reaction-diffusion;
D O I
10.1016/j.pbiomolbio.2007.10.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We discuss the difficulties of the numerical simulation of a stroke, and we describe the numerical methods which we have developed and used to obtain some realistic results. Nowadays, the computations are performed in two-dimensional slices of a brain, but the strategies to obtain full three-dimensional simulations are explored. This paper is written so as to be understandable by non-mathematicians. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 16 条
[11]   Absorbing boundary conditions and optimized Schwarz waveform relaxation [J].
Halpern, L. .
BIT NUMERICAL MATHEMATICS, 2006, 46 (Suppl 1) :S21-S34
[12]  
MARCHUK GI, 1990, HDB NUMERICAL ANAL, V1, P197, DOI DOI 10.1016/S1570-8659(05)80035-3
[13]  
Murray J. D., 2002, Mathematical Biology: I. An Introduction
[14]  
Murray J. D., 2003, MATH BIOL, DOI DOI 10.1007/B98869
[15]   Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems [J].
Ropp, DL ;
Shadid, JN .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (02) :449-466
[16]   ON CONSTRUCTION AND COMPARISON OF DIFFERENCE SCHEMES [J].
STRANG, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (03) :506-+