Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map

被引:430
作者
Naylor, Peter [1 ,2 ,3 ]
Lae, Marick [4 ]
Reyal, Fabien [5 ,6 ]
Walter, Thomas [1 ,2 ,3 ]
机构
[1] PSL Res Univ, MINES ParisTech, Ctr Computat Biol, F-75006 Paris, France
[2] Inst Curie, F-75005 Paris, France
[3] INSERM, U900, F-75005 Paris, France
[4] Inst Curie, Pathol Dept, F-75248 Paris, France
[5] Inst Curie, Translat Res Dept, RT2Lab, Residual Tumor & Response Treatment Lab, F-75248 Paris, France
[6] Inst Curie, Dept Surg, F-75248 Paris, France
关键词
Cancer research; deep learning; digital pathology; histopathology; nuclei segmentation; BREAST-CANCER; NETWORK;
D O I
10.1109/TMI.2018.2865709
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The advent of digital pathology provides us with the challenging opportunity to automatically analyze whole slides of diseased tissue in order to derive quantitative profiles that can be used for diagnosis and prognosis tasks. In particular, for the development of interpretable models, the detection and segmentation of cell nuclei is of the utmost importance. In this paper, we describe a new method to automatically segment nuclei from Haematoxylin and Eosin (H&E) stained histopathology data with fully convolutional networks. In particular, we address the problem of segmenting touching nuclei by formulating the segmentation problem as a regression task of the distance map. We demonstrate superior performance of this approach as compared to other approaches using Convolutional Neural Networks.
引用
收藏
页码:448 / 459
页数:12
相关论文
共 50 条
[1]  
Abadi M., 2015, P 12 USENIX S OPERAT
[2]   Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images [J].
Al-Kofahi, Yousef ;
Lassoued, Wiem ;
Lee, William ;
Roysam, Badrinath .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (04) :841-852
[3]   Lymphocyte density determined by computational pathology validated as a predictor of response to neoadjuvant chemotherapy in breast cancer: secondary analysis of the ARTemis trial [J].
Ali, H. R. ;
Dariush, A. ;
Thomas, J. ;
Provenzano, E. ;
Dunn, J. ;
Hiller, L. ;
Vallier, A. -L. ;
Abraham, J. ;
Piper, T. ;
Bartlett, J. M. S. ;
Cameron, D. A. ;
Hayward, L. ;
Brenton, J. D. ;
Pharoah, P. D. P. ;
Irwin, M. J. ;
Walton, N. A. ;
Earl, H. M. ;
Caldas, C. .
ANNALS OF ONCOLOGY, 2017, 28 (08) :1832-1835
[4]   Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer [J].
Ali, H. Raza ;
Dariush, Aliakbar ;
Provenzano, Elena ;
Bardwell, Helen ;
Abraham, Jean E. ;
Iddawela, Mahesh ;
Vallier, Anne-Laure ;
Hiller, Louise ;
Dunn, Janet. A. ;
Bowden, Sarah J. ;
Hickish, Tamas ;
McAdam, Karen ;
Houston, Stephen ;
Irwin, Mike J. ;
Pharoah, Paul D. P. ;
Brenton, James D. ;
Walton, Nicholas A. ;
Earl, Helena M. ;
Caldas, Carlos .
BREAST CANCER RESEARCH, 2016, 18
[5]  
[Anonymous], SENSORS
[6]  
BARTELS PH, 1988, ANAL QUANT CYTOL, V10, P299
[7]   Stain Specific Standardization of Whole-Slide Histopathological Images [J].
Bejnordi, Babak Ehteshami ;
Litjens, Geert ;
Timofeeva, Nadya ;
Otte-Holler, Irene ;
Homeyer, Andre ;
Karssemeijer, Nico ;
van der Laak, Jeroen A. W. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) :404-415
[8]  
Braz E. F., 2017, P S BRAS TEL PROC SI, P1059
[9]   A systematic design approach of an embedded-control material-strength testing system [J].
Chen, Jian ;
Li, Peng ;
Song, Gangbing ;
Li, Qingdong ;
Ren, Zhang .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (01) :3-17
[10]   Segmentation of Clustered Nuclei With Shape Markers and Marking Function [J].
Cheng, Jierong ;
Rajapakse, Jagath C. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (03) :741-748