Bayesian Dynamic Mode Decomposition

被引:0
作者
Takeishi, Naoya [1 ]
Kawahara, Yoshinobu [2 ,3 ]
Tabei, Yasuo [3 ]
Yairi, Takehisa [1 ]
机构
[1] Univ Tokyo, Dept Aeronaut & Astronaut, Tokyo, Japan
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka, Japan
[3] RIKEN Ctr Adv Intelligence Project, Tokyo, Japan
来源
PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE | 2017年
关键词
SPECTRAL PROPERTIES; APPROXIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic mode decomposition (DMD) is a data-driven method for calculating a modal representation of a nonlinear dynamical system, and it has been utilized in various fields of science and engineering. In this paper, we propose Bayesian DMD, which provides a principled way to transfer the advantages of the Bayesian formulation into DMD. To this end, we first develop a probabilistic model corresponding to DMD, and then, provide the Gibbs sampler for the posterior inference in Bayesian DMD. Moreover, as a specific example, we discuss the case of using a sparsity-promoting prior for an automatic determination of the number of dynamic modes. We investigate the empirical performance of Bayesian DMD using synthetic and real-world datasets.
引用
收藏
页码:2814 / 2821
页数:8
相关论文
共 39 条
[1]  
[Anonymous], 2016, ARXIV161106664V2
[2]  
[Anonymous], 2016, Adv. Neural Inf. Process. Syst
[3]  
[Anonymous], 2017, P 42 IEEE INT C AC S
[4]  
[Anonymous], 2016, Adv. Ceram. Sci. Eng
[5]   Estimation of perturbations in robotic behavior using dynamic mode decomposition [J].
Berger, Erik ;
Sastuba, Mark ;
Vogt, David ;
Jung, Bernhard ;
Ben Amor, Heni .
ADVANCED ROBOTICS, 2015, 29 (05) :331-343
[6]   STOCHASTIC ESTIMATION AND PROPER ORTHOGONAL DECOMPOSITION - COMPLEMENTARY TECHNIQUES FOR IDENTIFYING STRUCTURE [J].
BONNET, JP ;
COLE, DR ;
DELVILLE, J ;
GLAUSER, MN ;
UKEILEY, LS .
EXPERIMENTS IN FLUIDS, 1994, 17 (05) :307-314
[7]  
Brunton S. L., 2016, ARXIV160805306V1
[8]   Applied Koopmanism [J].
Budisic, Marko ;
Mohr, Ryan ;
Mezic, Igor .
CHAOS, 2012, 22 (04)
[9]  
Casella G, 2001, Biostatistics, V2, P485, DOI 10.1093/biostatistics/2.4.485
[10]   Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses [J].
Chen, Kevin K. ;
Tu, Jonathan H. ;
Rowley, Clarence W. .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (06) :887-915