Graphene based multiple heterojunctions as an effective approach for high-performance gas sensing

被引:2
作者
Wu, Chia-Lin [1 ]
Cheng, Ching-Cheng [1 ]
Sun, Tzu-Min [1 ]
Haider, Golam [1 ]
Liou, Yi-Rou [1 ]
Tan, Wei-Jyun [1 ]
Chiang, Chia-Wei [1 ]
Chen, Yang-Fang [1 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
关键词
HYDROGEN; SENSOR; FILMS; H-2;
D O I
10.1063/1.4963652
中图分类号
O59 [应用物理学];
学科分类号
摘要
We develop graphene-based multiple heterojunctions to realize sensors with a very high sensitivity (< 10 ppm), ultra-fast sensing time (< 10 ms), and stable repeatability. The sensing mechanism solely depends on the large change in the Fermi energy ( E-F) of graphene resulting from the absorbed molecules, which produces a large change in the output current across the heterojunction. The charge induced by the absorbed molecules remains in the graphene layer without transferring into the underlying layer owing to the well-designed band alignment among the constituent materials, which results in ultra-fast and highly sensitive performance. Furthermore, we demonstrate that with different polarities of external bias, the graphene multiple-junction sensors can be used to selectively detect different gases. In addition to the suitable band alignment, the high performance of our device arises from the sandwich structure of top and bottom electrodes, which enables to exponentially enhance the current across the Schottky junction. Moreover, the large shift of the Fermi level of graphene induced by its inherent nature of low density of states also plays an important role. Compared with all published reports, our device possesses a much better performance. Particularly, the response time is three orders of magnitude faster than those of reported values, which can provide a critical step to advance graphene based gas sensors toward real world applications. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 34 条
  • [1] Gas sensing properties of defect-controlled ZnO-nanowire gas sensor
    Ahn, M. -W.
    Park, K. -S.
    Heo, J. -H.
    Park, J. -G.
    Kim, D. -W.
    Choi, K. J.
    Lee, J. -H.
    Hong, S. -H.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (26)
  • [2] Hydrogen sensor based on graphene/ZnO nanocomposite
    Anand, Kanika
    Singh, Onkar
    Singh, Manmeet Pal
    Kaur, Jasmeet
    Singh, Ravi Chand
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 : 409 - 415
  • [3] Arshak K., 2004, Sensor Review, V24, P181, DOI 10.1108/02602280410525977
  • [4] SOLID-STATE GAS SENSORS - A REVIEW
    AZAD, AM
    AKBAR, SA
    MHAISALKAR, SG
    BIRKEFELD, LD
    GOTO, KS
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (12) : 3690 - 3704
  • [5] Bedia F.Z., 2013, INT J MAT SCI, V3, P59
  • [6] Silicon dioxide sacrificial layer etching in surface micromachining
    Buhler, J
    Steiner, FP
    Baltes, H
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1997, 7 (01) : R1 - R13
  • [7] Oxygen sensors made by monolayer graphene under room temperature
    Chen, C. W.
    Hung, S. C.
    Yang, M. D.
    Yeh, C. W.
    Wu, C. H.
    Chi, G. C.
    Ren, F.
    Pearton, S. J.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (24)
  • [8] Zinc Oxide Doped Graphene Oxide Films for Gas Sensing Applications
    Chetna
    Kumar, Shani
    Garg, A.
    Chowdhuri, A.
    Dhingra, V.
    Chaudhary, S.
    Kapoor, A.
    [J]. INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [9] Temperature dependence of raman scattering in ZnO
    Cusco, Ramon
    Alarcon-Llado, Esther
    Ibanez, Jordi
    Artus, Luis
    Jimenez, Juan
    Wang, Buguo
    Callahan, Michael J.
    [J]. PHYSICAL REVIEW B, 2007, 75 (16)
  • [10] Probing the Nature of Defects in Graphene by Raman Spectroscopy
    Eckmann, Axel
    Felten, Alexandre
    Mishchenko, Artem
    Britnell, Liam
    Krupke, Ralph
    Novoselov, Kostya S.
    Casiraghi, Cinzia
    [J]. NANO LETTERS, 2012, 12 (08) : 3925 - 3930