Fourier regularization method for solving a Cauchy problem for the Laplace equation

被引:58
作者
Fu, C. -L. [1 ]
Li, H. -F. [1 ]
Qian, Z. [1 ]
Xiong, X. -T. [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cauchy problem for the Laplace equation; Ill-posed problem; Fourier regularization; error estimate;
D O I
10.1080/17415970701228246
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we use Fourier method to solve a Cauchy problem for the Laplace equation in a strip region, the method is rather simple and convenient. Meanwhile, we overstep the Holder continuity and provide some more sharp error estimates between the exact solution and its approximation. Numerical examples also show that the method work effectively.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 20 条
[2]  
AO D. N. H\, 1992, Banach Center Publ., V27, P111
[3]   A spectral method for solving the sideways heat equation [J].
Berntsson, F .
INVERSE PROBLEMS, 1999, 15 (04) :891-906
[4]   Wavelet and Fourier methods for solving the sideways heat equation [J].
Eldén, L ;
Berntsson, F ;
Reginska, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2187-2205
[5]  
Franzone P. C., 1979, Calcolo, V16, P459, DOI 10.1007/BF02576643
[6]   Fourier regularization method for solving the surface heat flux from interior observations [J].
Fu, CL ;
Xiong, XT ;
Fu, P .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (5-6) :489-498
[7]   Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation [J].
Fu, CL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (02) :449-463
[8]   FUNKTIONENTHEORETISCHE BESTIMMUNG DES AUSSENFELDES ZU EINER ZWEIDIMENSIONALEN MAGNETOHYDROSTATISCHEN KONFIGURATION [J].
GORENFLO, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1965, 16 (02) :279-&
[9]   Stability results for the Cauchy problem for the Laplace equation in a strip [J].
Hào, DN ;
Hien, PM .
INVERSE PROBLEMS, 2003, 19 (04) :833-844
[10]   A MOLLIFICATION METHOD FOR ILL-POSED PROBLEMS [J].
HAO, DN .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :469-506