The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data

被引:66
作者
Moakher, Maher [1 ]
Zerai, Mourad [1 ,2 ,3 ]
机构
[1] Univ Tunis El Manar, ENIT LAMSIN, Lab Math & Numer Modeling Engn Sci, Natl Engn Sch Tunis, Tunis 1002, Tunisia
[2] Univ Tunis El Manar, Ecole Super Privee Ingn & Technol, Tunis, Tunisia
[3] Univ Tunis El Manar, ENIT LAMSIN, Tunis, Tunisia
关键词
Symmetric positive-definite matrices; Riemannian metric; Laplace-Beltrami; Regularization of DT-MRI data; Harmonic map flow; Perona-Malik flow; Minimal immersion flow; DIRECTION DIFFUSION; MINIMAL-SURFACES; EDGE-DETECTION; TENSOR; FRAMEWORK; MEMBRANES; MAPS;
D O I
10.1007/s10851-010-0255-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a Riemannian framework for smoothing data that are constrained to live in P(n), the space of symmetric positive-definite matrices of order n. We start by giving the differential geometry of P(n), with a special emphasis on P(3), considered at a level of detail far greater than heretofore. We then use the harmonic map and minimal immersion theories to construct three flows that drive a noisy field of symmetric positive-definite data into a smooth one. The harmonic map flow is equivalent to the heat flow or isotropic linear diffusion which smooths data everywhere. A modification of the harmonic flow leads to a Perona-Malik like flow which is a selective smoother that preserves edges. The minimal immersion flow gives rise to a nonlinear system of coupled diffusion equations with anisotropic diffusivity. Some preliminary numerical results are presented for synthetic DT-MRI data.
引用
收藏
页码:171 / 187
页数:17
相关论文
共 54 条
[1]  
ANDAI A, 2003, THESIS BUDAPEST U TE
[2]   MINIMAL-SURFACES AND STRUCTURES - FROM INORGANIC AND METAL CRYSTALS TO CELL-MEMBRANES AND BIO-POLYMERS [J].
ANDERSSON, S ;
HYDE, ST ;
LARSSON, K ;
LIDIN, S .
CHEMICAL REVIEWS, 1988, 88 (01) :221-242
[3]  
[Anonymous], 1986, Expositiones Mathematicae
[4]  
[Anonymous], 1999, Grad. Texts in Math., DOI DOI 10.1007/978-1-4612-0541-8
[5]  
Arsigny V, 2005, LECT NOTES COMPUT SC, V3749, P115
[6]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[7]   Riemannian geometry and matrix geometric means [J].
Bhatia, R ;
Holbrook, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (2-3) :594-618
[8]  
Boothby W. M., 1986, INTRO DIFFERENTIABLE
[9]   A Riemannian approach to anisotropic filtering of tensor fields [J].
Castano-Moraga, C. A. ;
Lenglet, C. ;
Deriche, R. ;
Ruiz-Alzola, J. .
SIGNAL PROCESSING, 2007, 87 (02) :263-276
[10]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193