Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images

被引:44
作者
Chen, K. [1 ,2 ,3 ]
Chen, X. [4 ]
Renaut, R. [2 ,3 ,5 ]
Alexander, G. E. [3 ,6 ]
Bandy, D. [1 ,3 ]
Guo, H. [2 ,3 ]
Reiman, E. M. [1 ,3 ,7 ,8 ]
机构
[1] Banner Alzheimer Inst, Banner Good Samaritan Positron Emiss Tomog PET, Phoenix, AZ USA
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ USA
[3] Arizona Alzheimers Consortium, Phoenix, AZ USA
[4] Arizona State Univ, Div Comp Stud, Mesa, AZ USA
[5] Arizona State Univ, Dept Biomed Informat, Tempe, AZ USA
[6] Arizona State Univ, Dept Psychol, Tempe, AZ USA
[7] Univ Arizona, Dept Psychiat, Tucson, AZ USA
[8] Translt Genom Res Inst TGen, Phoenix, AZ USA
关键词
D O I
10.1088/0031-9155/52/23/019
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an image-derived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using FDG PET data from 22 subjects, ICA was applied to an easily defined cubical region including the carotid artery and neighboring tissue. Carotid artery and tissue time activity curves and three venous samples were used to generate spillover and partial volume-corrected input functions and to calculate the parametric images of the cerebral metabolic rate for glucose (CMRgl). Different from a blood-sampling-free ICA approach, the results from our ICA approach are numerically well matched to those based on the arterial blood sampled input function. In fact, the ICA-derived input functions and CMRgl measurements were not only highly correlated (correlation coefficients > 0.99) to, but also highly comparable (regression slopes between 0.92 and 1.09), with those generated using arterial blood sampling. Moreover, the reliability of the ICA-derived input function remained high despite variations in the location and size of the cubical region. The ICA procedure makes it possible to quantify FDG PET images in an objective and reproducible manner.
引用
收藏
页码:7055 / 7071
页数:17
相关论文
共 20 条
[1]   Longitudinal PET evaluation of cerebral metabolic decline in dementia: A potential outcome measure in Alzheimer's disease treatment studies [J].
Alexander, GE ;
Chen, K ;
Pietrini, P ;
Rapoport, SI ;
Reiman, EM .
AMERICAN JOURNAL OF PSYCHIATRY, 2002, 159 (05) :738-745
[2]   Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies [J].
Asselin, MC ;
Cunningham, VJ ;
Amano, S ;
Gunn, RN ;
Nahmias, C .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (06) :1033-1054
[3]   Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function [J].
Chen, K ;
Bandy, D ;
Reiman, E ;
Huang, SC ;
Lawson, M ;
Feng, D ;
Yun, LS ;
Palant, A .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1998, 18 (07) :716-723
[4]   Single-trial variability in event-related BOLD signals [J].
Duann, JR ;
Jung, TP ;
Kuo, WJ ;
Yeh, TC ;
Makeig, S ;
Hsieh, JC ;
Sejnowski, TJ .
NEUROIMAGE, 2002, 15 (04) :823-835
[5]   An input function estimation method for FDG-PET human brain studies [J].
Guo, Hongbin ;
Renaut, Rosemary A. ;
Chen, Kewei .
NUCLEAR MEDICINE AND BIOLOGY, 2007, 34 (05) :483-492
[6]   Investigation of a new input function validation approach for dynamic mouse microPET studies [J].
Huang, SC ;
Wu, HM ;
Shoghi-Jadid, K ;
Stout, DB ;
Chatziioannou, A ;
Schelbert, HR ;
Barrio, JR .
MOLECULAR IMAGING AND BIOLOGY, 2004, 6 (01) :34-46
[7]  
Lee JS, 2001, J NUCL MED, V42, P938
[8]   Cluster analysis in kinetic modelling of the brain: a noninvasive alternative to arterial sampling [J].
Liptrot, M ;
Adams, KH ;
Martiny, L ;
Pinborg, LH ;
Lonsdale, MN ;
Olsen, NV ;
Holm, S ;
Svarer, C ;
Knudsen, GM .
NEUROIMAGE, 2004, 21 (02) :483-493
[9]   Input function in PET brain studies using MR-defined arteries [J].
Litton, JE .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1997, 21 (06) :907-909
[10]  
Lopresti BJ, 2005, J NUCL MED, V46, P1959