ON THE LOCAL-GLOBAL DIVISIBILITY OVER ABELIAN VARIETIES

被引:7
作者
Gillibert, Florence [1 ]
Ranieri, Gabriele [1 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Blanco Viel 596, Valparaiso, Chile
关键词
Local-global; Galois cohomology; abelian varieties; abelian surfaces; GALOIS PROPERTIES; ELLIPTIC-CURVES; TORSION POINTS; COUNTEREXAMPLES; PRINCIPLE;
D O I
10.5802/aif.3179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p >= 2 be a prime number and let k be a number field. Let A be an abelian variety defined over k. We prove that if Gal (k(A[p])/k) contains an element g of order dividing p - 1 not fixing any non-trivial element of A[p] and H-1 (Gal(k(A[p])/k), A[p]) is trivial, then the local-global divisibility by p(n) holds for ,A(k) for every n is an element of N. Moreover, we prove a similar result without the hypothesis on the triviality of H-1 (Gal(k(A[p])/k), A[p]), in the particular case where A is a principally polarized abelian variety. Then, we get a more precise result in the case when A has dimension 2. Finally, we show that the hypothesis over the order of g is necessary, by providing a counterexample. In the Appendix, we explain how our results are related to a question of Cassels on the divisibility of the Tate-Shafarevich group, studied by Ciperiani and Stix and Creutz.
引用
收藏
页码:847 / 873
页数:27
相关论文
共 22 条
[1]  
Artin E., 1968, CLASS FIELD THEORY
[2]  
Aschbacher M., 2000, Cambridge Studies in Advanced Mathematics, V10
[3]   Weil-Ch(a)over-captelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels [J].
Ciperiani, Mirela ;
Stix, Jakob .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 700 :175-207
[4]  
Creutz B, 2016, MATH RES LETT, V23, P377
[6]   Canonical forms of quaternary abelian substitutions in an arbitrary galois field [J].
Dickson, Leonard Eugene .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1901, 2 (1-4) :103-138
[7]   Explicit determination of the images of the galois representations attached to abelian surfaces with End(A)=Z [J].
Dieulefait, LV .
EXPERIMENTAL MATHEMATICS, 2002, 11 (04) :503-512
[8]   An analogue for elliptic curves of the Grunwald-Wang example [J].
Dvornicich, R ;
Zannier, U .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (01) :47-50
[9]   Local-global divisibility of rational points in some commutative algebraic groups [J].
Dvornicich, R ;
Zannier, U .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (03) :317-338
[10]   On a local-global principle for the divisibility of a rational point by a positive integer [J].
Dvornicich, Roberto ;
Zannier, Umberto .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :27-34