Localization of nonlocal theories

被引:107
作者
Calcagni, Gianluca [1 ]
Montobbio, Michele [2 ,3 ]
Nardelli, Giuseppe [3 ,4 ]
机构
[1] Univ Sussex, Dept Phys, Brighton BN1 9QH, E Sussex, England
[2] Univ Trent, Dipartimento Fis, I-38100 Trento, Italy
[3] Univ Trent, INFN Grp Collegato Trento, I-38100 Trento, Italy
[4] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
关键词
nonlocal theories; string field theory;
D O I
10.1016/j.physletb.2008.03.024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that a certain class of nonlocal scalar models, with a kinetic operator inspired by string field theory, is equivalent to a system which is local in the coordinates but nonlocal in an auxiliary evolution variable. This system admits both Lagrangian and Hamiltonian formulations, and its Cauchy problem and quantization are well-defined. We classify exact nonperturbative solutions of the localized model which can be found via the diffusion equation governing the fields. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 41 条
[21]  
FORINI V, 2006, JHEP, V604
[22]   Physical degrees of freedom of non-local theories [J].
Gomis, J ;
Kamimura, K ;
Ramírez, T .
NUCLEAR PHYSICS B, 2004, 696 (1-2) :263-291
[23]   Hamiltonian formalism for space-time noncommutative theories [J].
Gomis, J ;
Kamimura, K ;
Llosa, J .
PHYSICAL REVIEW D, 2001, 63 (04)
[24]   Dynamics in nonlocal cosmological models derived from string field theory [J].
Joukovskaya, Liudmila .
PHYSICAL REVIEW D, 2007, 76 (10)
[25]  
KHOURY J, HEPTH0612052, P91601
[26]  
KIERMAIER M, HEPTH0701249
[27]   Non-local SFT tachyon and cosmology [J].
Koshelev, Alexey S. .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04)
[28]   ON A NONPERTURBATIVE VACUUM FOR THE OPEN BOSONIC STRING [J].
KOSTELECKY, VA ;
SAMUEL, S .
NUCLEAR PHYSICS B, 1990, 336 (02) :263-296
[29]   Stretching the inflaton potential with kinetic energy [J].
Lidsey, James E. .
PHYSICAL REVIEW D, 2007, 76 (04)
[30]   HAMILTONIAN-FORMALISM FOR NONLOCAL LAGRANGIANS [J].
LLOSA, J ;
VIVES, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (06) :2856-2877