Poisson-Boltzmann Theory of pH-Sensitive (Annealing) Polyelectrolyte Brush

被引:95
|
作者
Zhulina, E. B. [2 ]
Borisov, O. V. [1 ,2 ]
机构
[1] UPPA CNRS, Inst Pluridisciplinaire Rech Environm & Mat, UMR 5254, F-64053 Pau, France
[2] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
基金
俄罗斯基础研究基金会;
关键词
CONSISTENT-FIELD THEORY; POLYMER BRUSHES; GRAFTED POLYELECTROLYTES; ACID) BRUSHES; LAYER; DENSITY; CHAINS; MODEL; SALT; STABILIZATION;
D O I
10.1021/la201456a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a self-consistent field analytical theory of a polymer brush formed by weakly charged pH-sensitive (annealing) polyelectrolytes tethered to a solid-liquid interface and immersed in buffer solution of low molecular weight salt. We use the Poisson-Boltzmann framework, applied by us previously to polyelectrolyte (PE) brushes with quenched charge (Zhulina, E. B.; Borisov, O. V. J. Chem. Phys.1997, 107, 5952). This approach allows for detailed analysis of the internal structure of annealing PE brush in terms of polymer density distribution, profiles of electrostatic potential and of local degree of chain ionization as a function of buffer ionic strength and pH without any assumptions on mobile ion distribution imposed in earlier scaling-type models. The presented analytical theory recovers all major asymptotic dependences for average brush properties predicted earlier. In particular, a nonmonotonic dependence of brush thickness on ionic strength and grafting density is confirmed and specified with accuracy of numerical coefficients including crossover regions. Moreover, the theory predicts qualitatively new effects, such as, e.g., disproportionation of tethered polyions into weakly charged concentrated proximal and strongly charged sparse distal brush domains at low salt and moderate grating densities. The presented results allow us to quantify responsive features of annealing PE brushes whose large-scale and local conformational properties can be manipulated by external stimuli.
引用
收藏
页码:10615 / 10633
页数:19
相关论文
共 50 条
  • [1] Polyelectrolyte brush in a cylindrical pore: A Poisson-Boltzmann theory
    Popova, Tatiana O.
    Laktionov, Mikhail Y.
    Zhulina, Ekaterina B.
    Borisov, Oleg V.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (20):
  • [2] MODIFIED POISSON-BOLTZMANN THEORY APPLIED TO LINEAR POLYELECTROLYTE SOLUTIONS
    DAS, T
    BRATKO, D
    BHUIYAN, LB
    OUTHWAITE, CW
    JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (01): : 410 - 418
  • [3] Polyelectrolyte Brush Interacting with Ampholytic Nanoparticles as Coarse-Grained Models of Globular Proteins: Poisson-Boltzmann Theory
    Salamatova, Tatiana O.
    Laktionov, Mikhail Y.
    Zhulina, Ekaterina B.
    Borisov, Oleg V.
    BIOMACROMOLECULES, 2023, 24 (06) : 2433 - 2446
  • [4] Poisson-Boltzmann theory of bionanosystems
    Sayyed-Ahmad, A.
    Miao, Y.
    Ortoleva, P.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (05) : 1100 - 1116
  • [5] POISSON-BOLTZMANN INTEGRAL-EQUATION FOR POLYELECTROLYTE SOLUTIONS
    VICTOR, JM
    JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (01): : 600 - 605
  • [6] ION BINDING IN POLYELECTROLYTE SOLUTIONS AND THE POISSON-BOLTZMANN EQUATION
    VINK, H
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1990, 86 (14): : 2607 - 2610
  • [8] Dynamic linear Poisson-Boltzmann theory
    Campbell, VS
    Grayce, CJ
    JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (13): : 5949 - 5955
  • [9] NUMERICAL SOLUTION TO THE POISSON-BOLTZMANN EQUATION FOR SPHERICAL POLYELECTROLYTE MOLECULES
    WALL, FT
    BERKOWITZ, J
    JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (01): : 114 - 122
  • [10] Ion-conserving Poisson-Boltzmann theory
    Sugioka, Hideyuki
    PHYSICAL REVIEW E, 2012, 86 (01):