On the boundedness of the differentiation operator between weighted spaces of holomorphic functions

被引:40
作者
Harutyunyan, Anahit [1 ]
Lusky, Wolfgang [2 ]
机构
[1] Yerevan State Univ, Fac Informat & Appl Math, Yerevan 25, Armenia
[2] Univ Gesamthsch Paderborn, Inst Math, D-33098 Paderborn, Germany
关键词
D O I
10.4064/sm184-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions on the weights v and w such that the differentiation operator D : Hv(Omega) -> Hw(Omega) between two weighted spaces of holomorphic functions is bounded and onto. Here Omega = C or Omega = D. In particular we characterize all weights v such that D : Hv(S?) Hw(S?) is bounded and onto where w(r) = v(r)(1 - r) if Omega = D and w = v if Omega = C. This leads to a new description of normal weights.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 22 条
[1]  
BERNDTSSON B, 1995, J REINE ANGEW MATH, V464, P109
[2]  
Blasco O, 2001, MATH NACHR, V223, P5
[3]  
BOGALSKA K, 2001, B POLISH ACAD SCI MA, V49, P409
[4]   A note on weighted Banach spaces of holomorphic functions [J].
Bonet, J ;
Wolf, E .
ARCHIV DER MATHEMATIK, 2003, 81 (06) :650-654
[5]  
Bonet J, 1999, STUD MATH, V137, P177
[6]  
Bonet J., 2003, COLECC ABIERTA, P117
[7]  
BONET J, CANAD MATH B, V42, P139
[8]  
CALBIS A, 1994, ARCH MATH BASEL, V62, P58
[9]   Weighted holomorphic spaces with trivial closed range multiplication operators [J].
Cichon, K ;
Seip, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (01) :201-207
[10]  
DOMAFISKI BP, 1998, J AUSTRAL MATH SOC, V64, P101