Squeezed vacuum states of light for gravitational wave detectors

被引:94
作者
Barsotti, Lisa [1 ]
Harms, Jan [2 ,3 ]
Schnabel, Roman [4 ]
机构
[1] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] GSSI, I-67100 Laquila, Italy
[3] INFN, Lab Nazl Gran Sasso, I-67100 Assergi, Italy
[4] Univ Hamburg, Zentrum Opt Quantentechnol, Inst Laserphys, D-22761 Hamburg, Germany
基金
美国国家科学基金会;
关键词
gravitational waves; squeezed light; quantum optics; STANDARD QUANTUM LIMIT; LOW-PHASE-NOISE; OPTICAL-PARAMETERS; SINGLE-FREQUENCY; HIGH-POWER; GENERATION; SILICON; CAVITY; MIRROR; FLUCTUATIONS;
D O I
10.1088/1361-6633/aab906
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A century after Einstein's formulation of general relativity, the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) made the first direct detection of gravitational waves. This historic achievement was the culmination of a world-wide effort and decades of instrument research. While sufficient for this monumental discovery, the current generation of gravitational-wave detectors represent the least sensitive devices necessary for the task; improved detectors will be required to fully exploit this new window on the Universe. In this paper, we review the application of squeezed vacuum states of light to gravitational-wave detectors as a way to reduce quantum noise, which currently limits their performance in much of the detection band.
引用
收藏
页数:29
相关论文
共 164 条
[41]   Measurement of the quantum states of squeezed light [J].
Breitenbach, G ;
Schiller, S ;
Mlynek, J .
NATURE, 1997, 387 (6632) :471-475
[42]   Direct measurement of absorption-induced wavefront distortion in high optical power systems [J].
Brooks, Aidan F. ;
Hosken, David ;
Munch, Jesper ;
Veitch, Peter J. ;
Yan, Zewu ;
Zhao, Chunnong ;
Fan, Yaohui ;
Ju, Li ;
Blair, David ;
Willems, Phil ;
Slagmolen, Bram ;
Degallaix, Jerome .
APPLIED OPTICS, 2009, 48 (02) :355-364
[43]   Non-classical light generated by quantum-noise-driven cavity optomechanics [J].
Brooks, Daniel W. C. ;
Botter, Thierry ;
Schreppler, Sydney ;
Purdy, Thomas P. ;
Brahms, Nathan ;
Stamper-Kurn, Dan M. .
NATURE, 2012, 488 (7412) :476-480
[44]  
Buonanno A, 2003, PHYS REV D, V67, DOI [10.1103/PhysRevD.67.062002, 10.1103/PhysRevD.062002]
[45]   Signal recycled laser-interferometer gravitational-wave detectors as optical springs [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2002, 65 (04)
[46]   Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2001, 64 (04)
[47]   Estimation of losses in a 300 m filter cavity and quantum noise reduction in the KAGRA gravitational-wave detector [J].
Capocasa, Eleonora ;
Barsuglia, Matteo ;
Degallaix, Jerome ;
Pinard, Laurent ;
Straniero, Nicolas ;
Schnabel, Roman ;
Somiya, Kentaro ;
Aso, Yoichi ;
Tatsumi, Daisuke ;
Flaminio, Raffaele .
PHYSICAL REVIEW D, 2016, 93 (08)
[48]   NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES [J].
CAVES, CM ;
SCHUMAKER, BL .
PHYSICAL REVIEW A, 1985, 31 (05) :3068-3092
[49]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[50]   ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM-MECHANICAL OSCILLATOR .1. ISSUES OF PRINCIPLE [J].
CAVES, CM ;
THORNE, KS ;
DREVER, RWP ;
SANDBERG, VD ;
ZIMMERMANN, M .
REVIEWS OF MODERN PHYSICS, 1980, 52 (02) :341-392