Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons

被引:32
作者
Boykin, Timothy B. [1 ]
Luisier, Mathieu [2 ]
Klimeck, Gerhard [2 ]
Jiang, Xueping [3 ]
Kharche, Neerav [3 ]
Zhou, Yu [3 ]
Nayak, Saroj K. [3 ]
机构
[1] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
[2] Purdue Univ, Sch Elect & Comp Engn, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
关键词
ELECTRONIC-PROPERTIES; ATOMISTIC SIMULATION; NEMO; 3-D; PERFORMANCE; STATE;
D O I
10.1063/1.3582136
中图分类号
O59 [应用物理学];
学科分类号
摘要
Accurate modeling of the pi-bands of armchair graphene nanoribbons (AGNRs) requires correctly reproducing asymmetries in the bulk graphene bands, as well as providing a realistic model for hydrogen passivation of the edge atoms. The commonly used single-p(z) orbital approach fails on both these counts. To overcome these failures we introduce a nearest-neighbor, three orbital per atom p/d tight-binding model for graphene. The parameters of the model are fit to first-principles density-functional theory -based calculations as well as to those based on the many-body Green's function and screened-exchange formalism, giving excellent agreement with the ab initio AGNR bands. We employ this model to calculate the current-voltage characteristics of an AGNR MOSFET and the conductance of rough-edge AGNRs, finding significant differences versus the single-p(z) model. These results show that an accurate band structure model is essential for predicting the performance of graphene-based nanodevices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3582136]
引用
收藏
页数:7
相关论文
共 39 条
[1]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[2]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[3]   From graphene to graphite: A general tight-binding approach for nanoribbon carrier transport [J].
Finkenstadt, Daniel ;
Pennington, G. ;
Mehl, M. J. .
PHYSICAL REVIEW B, 2007, 76 (12)
[4]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762
[5]   A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe ;
Klimeck, Gerhard .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) :1782-1788
[6]   Controlling Polarization at Insulating Surfaces: Quasiparticle Calculations for Molecules Adsorbed on Insulator Films [J].
Freysoldt, Christoph ;
Rinke, Patrick ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[7]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[8]   A brief introduction to the ABINIT software package [J].
Gonze, X ;
Rignanese, GM ;
Verstraete, M ;
Beuken, JM ;
Pouillon, Y ;
Caracas, R ;
Jollet, F ;
Torrent, M ;
Zerah, G ;
Mikami, M ;
Ghosez, P ;
Veithen, M ;
Raty, JY ;
Olevano, V ;
Bruneval, F ;
Reining, L ;
Godby, R ;
Onida, G ;
Hamann, DR ;
Allan, DC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :558-562
[9]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[10]   Scaling of the localization length in armchair-edge graphene nanoribbons [J].
Gunlycke, D. ;
White, C. T. .
PHYSICAL REVIEW B, 2010, 81 (07)