Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons

被引:31
作者
Boykin, Timothy B. [1 ]
Luisier, Mathieu [2 ]
Klimeck, Gerhard [2 ]
Jiang, Xueping [3 ]
Kharche, Neerav [3 ]
Zhou, Yu [3 ]
Nayak, Saroj K. [3 ]
机构
[1] Univ Alabama, Dept Elect & Comp Engn, Huntsville, AL 35899 USA
[2] Purdue Univ, Sch Elect & Comp Engn, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[3] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
关键词
ELECTRONIC-PROPERTIES; ATOMISTIC SIMULATION; NEMO; 3-D; PERFORMANCE; STATE;
D O I
10.1063/1.3582136
中图分类号
O59 [应用物理学];
学科分类号
摘要
Accurate modeling of the pi-bands of armchair graphene nanoribbons (AGNRs) requires correctly reproducing asymmetries in the bulk graphene bands, as well as providing a realistic model for hydrogen passivation of the edge atoms. The commonly used single-p(z) orbital approach fails on both these counts. To overcome these failures we introduce a nearest-neighbor, three orbital per atom p/d tight-binding model for graphene. The parameters of the model are fit to first-principles density-functional theory -based calculations as well as to those based on the many-body Green's function and screened-exchange formalism, giving excellent agreement with the ab initio AGNR bands. We employ this model to calculate the current-voltage characteristics of an AGNR MOSFET and the conductance of rough-edge AGNRs, finding significant differences versus the single-p(z) model. These results show that an accurate band structure model is essential for predicting the performance of graphene-based nanodevices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3582136]
引用
收藏
页数:7
相关论文
共 39 条
  • [1] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [2] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [3] From graphene to graphite: A general tight-binding approach for nanoribbon carrier transport
    Finkenstadt, Daniel
    Pennington, G.
    Mehl, M. J.
    [J]. PHYSICAL REVIEW B, 2007, 76 (12):
  • [4] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [5] A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry
    Fiori, Gianluca
    Iannaccone, Giuseppe
    Klimeck, Gerhard
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) : 1782 - 1788
  • [6] Controlling Polarization at Insulating Surfaces: Quasiparticle Calculations for Molecules Adsorbed on Insulator Films
    Freysoldt, Christoph
    Rinke, Patrick
    Scheffler, Matthias
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (05)
  • [7] Peculiar localized state at zigzag graphite edge
    Fujita, M
    Wakabayashi, K
    Nakada, K
    Kusakabe, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) : 1920 - 1923
  • [8] A brief introduction to the ABINIT software package
    Gonze, X
    Rignanese, GM
    Verstraete, M
    Beuken, JM
    Pouillon, Y
    Caracas, R
    Jollet, F
    Torrent, M
    Zerah, G
    Mikami, M
    Ghosez, P
    Veithen, M
    Raty, JY
    Olevano, V
    Bruneval, F
    Reining, L
    Godby, R
    Onida, G
    Hamann, DR
    Allan, DC
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6): : 558 - 562
  • [9] ABINIT: First-principles approach to material and nanosystem properties
    Gonze, X.
    Amadon, B.
    Anglade, P. -M.
    Beuken, J. -M.
    Bottin, F.
    Boulanger, P.
    Bruneval, F.
    Caliste, D.
    Caracas, R.
    Cote, M.
    Deutsch, T.
    Genovese, L.
    Ghosez, Ph.
    Giantomassi, M.
    Goedecker, S.
    Hamann, D. R.
    Hermet, P.
    Jollet, F.
    Jomard, G.
    Leroux, S.
    Mancini, M.
    Mazevet, S.
    Oliveira, M. J. T.
    Onida, G.
    Pouillon, Y.
    Rangel, T.
    Rignanese, G. -M.
    Sangalli, D.
    Shaltaf, R.
    Torrent, M.
    Verstraete, M. J.
    Zerah, G.
    Zwanziger, J. W.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) : 2582 - 2615
  • [10] Scaling of the localization length in armchair-edge graphene nanoribbons
    Gunlycke, D.
    White, C. T.
    [J]. PHYSICAL REVIEW B, 2010, 81 (07):