Numerical computation of minimal polynomial bases: A generalized resultant approach

被引:13
作者
Antoniou, EN [1 ]
Vardulakis, AIG [1 ]
Vologiannidis, S [1 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Sci, Dept Math, GR-54006 Thessaloniki, Greece
关键词
polynomial matrices; minimal polynomial basis; matrix fraction description;
D O I
10.1016/j.laa.2005.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new algorithm for the computation of a minimal polynomial basis of the left kernel of a given polynomial matrix F(s). The proposed method exploits the structure of the left null space of generalized Wolovich or Sylvester resultants to compute row polynomial vectors that form a minimal polynomial basis of left kernel of the given polynomial matrix. The entire procedure can be implemented using only orthogonal transformations of constant matrices and results to a minimal basis with orthonormal coefficients. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 278
页数:15
相关论文
共 23 条
[1]  
ANTONIOU EN, 2003, P 11 IEEE MED C CONT
[2]   An algorithm for coprime matrix fraction description using Sylvester matrices [J].
Basilio, JC ;
Kouvaritakis, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 266 :107-125
[3]   A NEW METHOD FOR COMPUTING A COLUMN REDUCED POLYNOMIAL MATRIX [J].
BEELEN, TGJ ;
VANDENHURK, GJ ;
PRAAGMAN, C .
SYSTEMS & CONTROL LETTERS, 1988, 10 (04) :217-224
[4]   NUMERICAL COMPUTATION OF A COPRIME FACTORIZATION OF A TRANSFER-FUNCTION MATRIX [J].
BEELEN, TGJ ;
VELTKAMP, GW .
SYSTEMS & CONTROL LETTERS, 1987, 9 (04) :281-288
[5]   GREATEST COMMON DIVISORS VIA GENERALIZED SYLVESTER AND BEZOUT MATRICES [J].
BITMEAD, RR ;
KAILATH, T ;
KUNG, SY ;
ANDERSON, BDO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (06) :1043-1047
[6]  
Callier F. M., 1982, Multivariable Feedback Systems
[7]  
CALLIER FM, 2001, P IFAC IEEE S SYST S
[8]  
FORNEY GD, 1975, SIAM J CONTROL, V13, P493, DOI 10.1137/0313029
[9]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[10]  
GU M, 1994, YALEUDCSRR966 YAL U