Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning

被引:26
作者
Tu, Defang [1 ]
Yan, Jianqi [2 ]
Xie, Yunbo [2 ]
Li, Jun [1 ,3 ]
Feng, Shuo [4 ]
Xia, Mingxu [1 ]
Li, Jianguo [1 ,3 ]
Alex Po Leung [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Macau Univ Sci & Technol, Macau, Peoples R China
[3] Shanghai Key Lab Adv High Temp Mat & Precis Formi, Shanghai 200240, Peoples R China
[4] Univ Leicester, Sch Engn, Leicester LE1 7RH, Leics, England
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2022年 / 96卷
基金
中国国家自然科学基金;
关键词
Mn-Fe-P-Si alloy; Material design; Magnetocaloric performance; Machine learning; Neural network; PHASE-TRANSITION; MAGNETIC-PROPERTIES; TEMPERATURE; SUBSTITUTION; MICROSTRUCTURE;
D O I
10.1016/j.jmst.2021.03.082
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetocaloric performance is of vital importance for Mn-Fe-P-Si alloys. However, when processes and compositions are considered, designing alloys with large magnetic entropy changes (Delta S-m), low thermal hysteresis (Delta T-hys), and Curie temperatures (T-C) around room temperature become relatively complicated. In this study, we adopt machine learning methods to predict the magnetocaloric performance of Mn-FeP-Si compounds for the first time. To achieve this goal, 503, 465, and 660 data points for datasets with T-C, Delta T-hys, and Delta S-m are collected, respectively. The collected datasets contain parameters of compositions, preparations, heat treatment, and magnetic field changes. We search for the optimal configuration using various methods and also compare their mean squared errors (MSE) and allowable errors. Evaluation results show that the performance of neural networks (NNs) is better than other methods. Therefore, we select NN to explore the T-C, Delta T-hys, and Delta S-m values as a function of Mn, Si, metal/non-metal ratios, and B (Boron). We also propose to use the composition window with excellent magnetocaloric performance. These results not only help us gain deep insights into Mn-Fe-P-Si alloys but also accelerate the design process of alloys suitable for magnetocaloric materials. This work has the potential to solve the challenges and boost the research of Mn-Fe-P-Si alloys. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 54 条
[1]  
[Anonymous], 2003, The Magnetocaloric Effect and its Applications
[2]   Lattice dynamics across the magnetic transition in (Mn,Fe)1.95(P,Si) [J].
Bessas, D. ;
Maschek, M. ;
Yibole, H. ;
Lai, J. -W. ;
Souliou, S. M. ;
Sergueev, I. ;
Dugulan, A. I. ;
van Dijk, N. H. ;
Bruck, E. .
PHYSICAL REVIEW B, 2018, 97 (09)
[3]   Predicting glass transition temperatures using neural networks [J].
Cassar, Daniel R. ;
de Carvalho, Andre C. P. L. F. ;
Zanotto, Edgar D. .
ACTA MATERIALIA, 2018, 159 :249-256
[4]   Design of a nickel-base superalloy using a neural network [J].
Conduit, B. D. ;
Jones, N. G. ;
Stone, H. J. ;
Conduit, G. J. .
MATERIALS & DESIGN, 2017, 131 :358-365
[5]   Magnetic phase transitions and the magnetothermal properties of gadolinium [J].
Dan'kov, SY ;
Tishin, AM ;
Pecharsky, VK ;
Gschneidner, KA .
PHYSICAL REVIEW B, 1998, 57 (06) :3478-3490
[6]  
Drucker H, 1997, ADV NEUR IN, V9, P155
[7]   From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds [J].
Dung, N. H. ;
Zhang, L. ;
Ou, Z. Q. ;
Bruck, E. .
APPLIED PHYSICS LETTERS, 2011, 99 (09)
[8]   Mixed Magnetism for Refrigeration and Energy Conversion [J].
Dung, Nguyen H. ;
Ou, Zhi Qiang ;
Caron, Luana ;
Zhang, Lian ;
Thanh, Dinh T. Cam ;
de Wijs, Gilles A. ;
de Groot, Rob A. ;
Buschow, K. H. Jurgen ;
Bruck, Ekkes .
ADVANCED ENERGY MATERIALS, 2011, 1 (06) :1215-1219
[9]  
Fang Y, 2018, MAT SCI FORUM, V913, P759
[10]   Microstructural and magnetic properties of Mn-Fe-P-Si (Fe2 P-type) magnetocaloric compounds [J].
Fries, Maximilian ;
Pfeuffer, Lukas ;
Bruder, Enrico ;
Gottschall, Tino ;
Ener, Semih ;
Diop, Leopold V. S. ;
Groeb, Thorsten ;
Skokov, Konstantin P. ;
Gutfleisch, Oliver .
ACTA MATERIALIA, 2017, 132 :222-229