Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation

被引:73
作者
Afroz, Mohammad Adil [1 ,3 ]
Ghimire, Nabin [3 ]
Reza, Khan Mamun [3 ]
Bahrami, Behzad [3 ]
Bobba, Raja Sekhar [3 ]
Gurung, Ashim [3 ]
Chowdhury, Ashraful Haider [3 ]
Iyer, Parameswar Krishnan [1 ,2 ]
Quo, Qiquan [3 ]
机构
[1] Indian Inst Technol Guwahati, Dept Chem, Gauhati 781039, Assam, India
[2] Indian Inst Technol Guwahati, Ctr Nanotechnol, Gauhati 781039, Assam, India
[3] South Dakota State Univ, Dept Elect Engn, Ctr Adv Photovolta, Brookings, SD 57007 USA
关键词
oxalic acid; perovskite solar cells; additive; stability; efficiency; HOLE-CONDUCTOR-FREE; PROCESSED PEROVSKITE; HALIDE PEROVSKITES; HIGHLY EFFICIENT; BASE ADDUCT; CRYSTALLIZATION; TEMPERATURE; GROWTH; LAYER; FILM;
D O I
10.1021/acsaem.9b02111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Achieving long-term stability along with high power conversion efficiency (PCE) is the biggest obstacle for the pursuit of organic-inorganic perovskite solar cells (PSCs) toward commercialization. Herein, we demonstrate additive assisted perovskite crystal growth as an effective strategy to improve both power conversion efficiency and thermal stability of methylammonium lead triiodide (MAPbI(3)) perovskite solar cells. For this, oxalic acid (OA) with two bifacial carboxylic acid groups was employed as an additive into the perovskite precursor solution, which facilitated modulating the crystallization process leading to increase in grain size, reduced grain boundaries and trap states. Subsequently, devices fabricated with the OA additive showed a power conversion efficiency of 17.12%, compared to the control device with 14.06%. Furthermore, enhanced thermal stability was achieved for the OA-modified PSCs compared to that of the pristine device. The device without the OA additive retained 14% of the initial PCE after only 9 h of heat treatment at 100 degrees C, whereas for the same condition, the OA-modified device retained 90% after 9 h and even 70% after 19 h. These observations suggest that OA-assisted morphological improvement of perovskite can offer an efficient approach to further improve the performance as well as stability of the PSCs.
引用
收藏
页码:2432 / 2439
页数:8
相关论文
共 56 条
[1]   Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast perovskite-based solar cells [J].
Afroz, Mohammad Adil ;
Gupta, Ritesh Kant ;
Garai, Rabindranath ;
Hossain, Maimur ;
Tripathi, Suyash Pati ;
Iyer, Parameswar Krishnan .
ORGANIC ELECTRONICS, 2019, 74 :172-178
[2]   Trapped charge-driven degradation of perovskite solar cells [J].
Ahn, Namyoung ;
Kwak, Kwisung ;
Jang, Min Seok ;
Yoon, Heetae ;
Lee, Byung Yang ;
Lee, Jong-Kwon ;
Pikhitsa, Peter V. ;
Byun, Junseop ;
Choi, Mansoo .
NATURE COMMUNICATIONS, 2016, 7
[3]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[4]   Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods [J].
Al-Dainy, Gailan A. ;
Bourdo, Shawn E. ;
Saini, Viney ;
Berry, Brian C. ;
Biris, Alexandru S. .
ENERGY TECHNOLOGY, 2017, 5 (03) :373-401
[5]   Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes [J].
Besleaga, Cristina ;
Abramiuc, Laura Elena ;
Stancu, Viorica ;
Tomulescu, Andrei Gabriel ;
Sima, Marian ;
Trinca, Liliana ;
Plugaru, Neculai ;
Pintilie, Lucian ;
Nemnes, George Alexandru ;
Iliescu, Mihaiela ;
Svavarsson, Halldor Gudfinnur ;
Manolescu, Andrei ;
Pintilie, Ioana .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (24) :5168-5175
[6]  
Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.142, 10.1038/NENERGY.2016.142]
[7]   Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market? [J].
Chen, Haining ;
Yang, Shihe .
ADVANCED MATERIALS, 2017, 29 (24)
[8]   Solvent effect on the hole-conductor-free fully printable perovskite solar cells [J].
Chen, Jiangzhao ;
Xiong, Yuli ;
Rong, Yaoguang ;
Mei, Anyi ;
Sheng, Yusong ;
Jiang, Pei ;
Hu, Yue ;
Li, Xiong ;
Han, Hongwei .
NANO ENERGY, 2016, 27 :130-137
[9]   Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells [J].
Chen, Yihua ;
Li, Nengxu ;
Wang, Ligang ;
Li, Liang ;
Xu, Ziqi ;
Jiao, Haoyang ;
Liu, Pengfei ;
Zhu, Cheng ;
Zai, Huachao ;
Sun, Mingzi ;
Zou, Wei ;
Zhang, Shuai ;
Xing, Guichuan ;
Liu, Xinfeng ;
Wang, Jianpu ;
Li, Dongdong ;
Huang, Bolong ;
Chen, Qi ;
Zhou, Huanping .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells [J].
Chiang, Chien-Hung ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Wu, Chun-Guey .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (03) :808-817